predict_fof_pc | R Documentation |
Predict new observations of the functional response variable and calculate the corresponding prediction error (and their standardized or studentized version) given new observations of functional covariates and a fitted function-on-function linear regression model.
predict_fof_pc(object, mfdobj_y_new, mfdobj_x_new)
object |
A list obtained as output from |
mfdobj_y_new |
An object of class |
mfdobj_x_new |
An object of class |
A list of mfd objects. It contains:
pred_error
: the prediction error of the
standardized functional response variable,
pred_error_original_scale
:
the prediction error of the functional
response variable on the original scale,
y_hat_new
: the prediction of the
functional response observations on the original scale,
y_z_new
: the standardized version of the
functional response observations provided in mfdobj_y_new
,
y_hat_z_new
: the prediction of the
functional response observations on the standardized/studentized scale.
C. Capezza, F. Centofanti
Centofanti F, Lepore A, Menafoglio A, Palumbo B, Vantini S. (2021) Functional Regression Control Chart. Technometrics, 63(3):281–294. doi:10.1080/00401706.2020.1753581
library(funcharts)
data("air")
air <- lapply(air, function(x) x[1:10, , drop = FALSE])
fun_covariates <- c("CO", "temperature")
mfdobj_x <- get_mfd_list(air[fun_covariates], lambda = 1e-2)
mfdobj_y <- get_mfd_list(air["NO2"], lambda = 1e-2)
mod <- fof_pc(mfdobj_y, mfdobj_x)
predict_fof_pc(mod,
mfdobj_y_new = mfdobj_y,
mfdobj_x_new = mfdobj_x)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.