functionals
is a lightweight toolkit for functional programming in R
with built-in support for parallelism and progress bars. It extends base
R’s functional tools with a consistent, minimal API for mapping,
walking, reducing, cross-validating, and repeating computations across
lists, data frames, and grouped data.
| Function | Main arguments | Output type | Description |
|--------------|---------------------------------------|-------------|-------------------------------------------------------------|
| fmap()
| .x
, .f
, ncores
, pb
| list | Map .f
over elements of .x
|
| fmapn()
| .l
, .f
, ncores
, pb
| list | Map .f
over multiple aligned lists |
| fmapr()
| .df
, .f
, ncores
, pb
| list | Map .f
over each row of a data frame (as named list) |
| fmapc()
| .df
, .f
, ncores
, pb
| list | Map .f(column, name)
over each column |
| fmapg()
| .df
, .f
, by
, ncores
, pb
| list | Map .f(group_df)
over groups defined by a column |
| floop()
| .x
, .f
, ...
, ncores
, pb
| list | General-purpose functional loop with side-effects |
| fwalk()
| .x
, .f
, ncores
, pb
| NULL | Map .f
over .x
for side-effects only (invisible return) |
| frepeat()
| times
, expr
, .x
, ncores
, pb
| list/vector | Repeat a call/expression multiple times |
| fcv()
| .splits
, .f
, ncores
, pb
| list | Map .f
over resampling splits from rsample::vfold_cv()
|
| freduce()
| .x
, .f
, ...
| scalar/list | Reduce .x
using a binary function .f
|
| fcompose()
| any number of functions f1, f2, ...
| function | Compose multiple functions: f1(f2(...(x)))
|
| fapply()
| .x
, .f
, ncores
, pb
, ...
| list | Core internal utility for applying a function over .x
|
| Task | functionals
Example | purrr
Example | Base R |
|--------------------------|-----------------------------------------------------------|----------------------------------------------------|---------------------------------------------|
| Map square | fmap(1:5, function(x) x^2)
| map(1:5, function(x) x^2)
| lapply(1:5, function(x) x^2)
|
| Map over N arguments | fmapn(list(1:3, 4:6, 7:9), function(x, y, z) x + y + z)
| pmap(list(1:3, 4:6, 7:9), function(x, y, z) ...)
| Map(function(x, y, z) ..., 1:3, 4:6, 7:9)
|
| Map over data frame rows | fmapr(df, function(row) row$a + row$b)
| pmap(df[c("a", "b")], function(x, y) x + y)
| apply(df, 1, function(row) ...)
|
| Map over data frame cols | fmapc(df, function(x, name) mean(x))
| imap(df, function(x, name) mean(x))
| lapply(df, mean)
|
| Grouped map | fmapg(df, f, by = "group")
| map(split(df, df$group), f)
| lapply(split(df, df$group), f)
|
| General-purpose loop | floop(1:3, function(x) cat(x))
| (manual recursion) | for (x in 1:3) cat(x)
|
| Parallel + progress | fmap(x, f, ncores = 4, pb = TRUE)
| (future_map(x, f)) with progressr
| parLapply(cl, x, f)
or mclapply()
|
| Repeat simulation | frepeat(100, function() rnorm(1))
| (manual loop) | replicate(100, rnorm(1))
|
| Walk with side effects | fwalk(letters, function(x) cat(x))
| walk(letters, function(x) cat(x))
| lapply(letters, cat)
|
| Reduce | freduce(1:5, `+`)
| reduce(1:5, `+`)
| Reduce(`+`, 1:5)
|
| Compose functions | fcompose(sqrt, abs)(-4)
| compose(sqrt, abs)(-4)
| (function(x) sqrt(abs(x)))(-4)
|
~ .x + .y
?While functionals
draws inspiration from purrr
, it intentionally
avoids supporting the formula-based anonymous function syntax (e.g.,
~ .x + 1
) for now.
This decision is based on:
rlang
)function(x) { ... }
styleWe may consider adding tidy evaluation support (e.g., with quosures or
rlang::as_function
) in a future release. However, the current
philosophy favors clarity and simplicity.
# install.packages("functionals") # when available
#remotes::install_github("ielbadisy/functionals")
library(functionals)
library(purrr)
library(furrr)
#> Loading required package: future
library(pbapply)
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
library(rsample)
library(bench)
plan(multisession)
# utility to compare results
compare_outputs <- function(label, x, y) {
cat("\n", label, "->", if (identical(x, y)) "dentical\n" else if (isTRUE(all.equal(x, y))) "nearly equal\n" else "different\n")
}
# strip names and convert to plain numeric vector
as_vec <- function(x) as.numeric(unlist(x, use.names = FALSE))
x1 <- fmap(1:5, function(x) x^2)
x2 <- lapply(1:5, function(x) x^2)
x3 <- map(1:5, ~ .x^2)
x4 <- future_map(1:5, ~ .x^2)
x5 <- pblapply(1:5, function(x) x^2)
compare_outputs("Element-wise: base", x1, x2)
#>
#> Element-wise: base -> dentical
compare_outputs("Element-wise: purrr", x1, x3)
#>
#> Element-wise: purrr -> dentical
compare_outputs("Element-wise: furrr", x1, x4)
#>
#> Element-wise: furrr -> dentical
compare_outputs("Element-wise: pbapply", x1, x5)
#>
#> Element-wise: pbapply -> dentical
x1 <- fmapn(list(1:3, 4:6), function(x, y) x + y)
x2 <- Map(`+`, 1:3, 4:6)
x3 <- pmap(list(1:3, 4:6), ~ ..1 + ..2)
x4 <- future_pmap(list(1:3, 4:6), ~ ..1 + ..2)
compare_outputs("Multi-input: base", x1, x2)
#>
#> Multi-input: base -> dentical
compare_outputs("Multi-input: purrr", x1, x3)
#>
#> Multi-input: purrr -> dentical
compare_outputs("Multi-input: furrr", x1, x4)
#>
#> Multi-input: furrr -> dentical
x1 <- fmapr(mtcars, function(row) row$mpg + row$cyl)
rowlist <- lapply(seq_len(nrow(mtcars)), function(i) as.list(mtcars[i, ]))
x2 <- lapply(rowlist, function(row) row$mpg + row$cyl)
x3 <- map(rowlist, function(row) row$mpg + row$cyl)
compare_outputs("Row-wise: base", as_vec(x1), as_vec(x2))
#>
#> Row-wise: base -> dentical
compare_outputs("Row-wise: purrr", as_vec(x1), as_vec(x3))
#>
#> Row-wise: purrr -> dentical
x1 <- fmapc(mtcars, function(col, name) mean(col))
x2 <- sapply(mtcars, mean)
x3 <- imap(mtcars, ~ mean(.x))
x4 <- future_imap(mtcars, ~ mean(.x))
compare_outputs("Column-wise: base", x1, as.list(x2))
#>
#> Column-wise: base -> dentical
compare_outputs("Column-wise: purrr", x1, x3)
#>
#> Column-wise: purrr -> dentical
compare_outputs("Column-wise: furrr", x1, x4)
#>
#> Column-wise: furrr -> dentical
x1 <- fmapg(iris, function(df) colMeans(df[1:4]), by = "Species")
x2 <- lapply(split(iris, iris$Species), function(df) colMeans(df[1:4]))
x3 <- map(split(iris, iris$Species), ~ colMeans(.x[1:4]))
x4 <- future_map(split(iris, iris$Species), ~ colMeans(.x[1:4]))
compare_outputs("Group-wise: base", x1, x2)
#>
#> Group-wise: base -> dentical
compare_outputs("Group-wise: purrr", x1, x3)
#>
#> Group-wise: purrr -> dentical
compare_outputs("Group-wise: furrr", x1, x4)
#>
#> Group-wise: furrr -> dentical
cat("\nSide-effects:\n")
#>
#> Side-effects:
fwalk(1:3, print)
#> [1] 1
#> [1] 2
#> [1] 3
x1 <- floop(1:5, function(x) x^2, .capture = TRUE)
x2 <- lapply(1:5, function(x) x^2)
x3 <- {
out <- list()
for (i in 1:5) out[[i]] <- i^2
out
}
compare_outputs("floop() vs lapply()", x1, x2)
#>
#> floop() vs lapply() -> dentical
compare_outputs("floop() vs for()", x1, x3)
#>
#> floop() vs for() -> dentical
cat("\nGeneral-purpose loop (side-effects):\n")
#>
#> General-purpose loop (side-effects):
floop(1:3, function(x) cat("floop says:", x, "\n"), pb = TRUE, .capture = FALSE)
#> | | 0% elapsed=00h 00m 00s, remaining~...floop says: 1
#> |================ | 33% elapsed=00h 00m 00s, remaining~00h 00m 00sfloop says: 2
#> |================================= | 67% elapsed=00h 00m 00s, remaining~00h 00m 00sfloop says: 3
#> |==================================================| 100% elapsed=00h 00m 00s, remaining~00h 00m 00s
cat("for-loop equivalent:\n")
#> for-loop equivalent:
for (x in 1:3) cat("for says:", x, "\n")
#> for says: 1
#> for says: 2
#> for says: 3
splits <- vfold_cv(iris, v = 3)$splits
fit_model <- function(split) mean(analysis(split)$Sepal.Length)
x1 <- fcv(splits, fit_model)
x2 <- lapply(splits, fit_model)
compare_outputs("CV map: base", x1, x2)
#>
#> CV map: base -> dentical
x1 <- frepeat(times = 10, expr = rnorm(1))
x2 <- as.list(replicate(10, rnorm(1)))
x3 <- as.list(pbreplicate(10, rnorm(1)))
cat("\nRepeat: Results not comparable (randomized output)\n")
#>
#> Repeat: Results not comparable (randomized output)
x1 <- freduce(1:5, `+`)
x2 <- Reduce(`+`, 1:5)
x3 <- reduce(1:5, `+`)
compare_outputs("Reduce: base", x1, x2)
#>
#> Reduce: base -> dentical
compare_outputs("Reduce: purrr", x1, x3)
#>
#> Reduce: purrr -> dentical
x1 <- fcompose(sqrt, abs)(-4)
x2 <- (function(x) sqrt(abs(x)))(-4)
x3 <- compose(sqrt, abs)(-4)
compare_outputs("Compose: base", x1, x2)
#>
#> Compose: base -> dentical
compare_outputs("Compose: purrr", x1, x3)
#>
#> Compose: purrr -> dentical
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.