components_extract | R Documentation |
Extract list of conditional probability tables and list of clique potentials from data.
extract_cpt(data_, graph, smooth = 0)
extract_pot(data_, graph, smooth = 0)
extract_marg(data_, graph, smooth = 0)
marg2pot(marg_rep)
pot2marg(pot_rep)
data_ |
A named array or a dataframe. |
graph |
An |
smooth |
See 'details' below. |
marg_rep |
An object of class |
pot_rep |
An object of class |
If smooth
is non-zero then smooth
is added
to all cell counts before normalization takes place.
extract_cpt
: A list of conditional probability tables.
extract_pot
: A list of clique potentials.
extract_marg
: A list of clique marginals.
Søren Højsgaard, sorenh@math.aau.dk
Søren Højsgaard (2012). Graphical Independence Networks with the gRain Package for R. Journal of Statistical Software, 46(10), 1-26. https://www.jstatsoft.org/v46/i10/.
compileCPT
, compilePOT
,
grain
## Extract cpts / clique potentials from data and graph
# specification and create network. There are different ways:
data(lizard, package="gRbase")
# DAG: height <- species -> diam
daG <- dag(~species + height:species + diam:species, result="igraph")
# UG : [height:species][diam:species]
uG <- ug(~height:species + diam:species, result="igraph")
pt <- extract_pot(lizard, ~height:species + diam:species)
cp <- extract_cpt(lizard, ~species + height:species + diam:species)
pt
cp
# Both specify the same probability distribution
tabListMult(pt) |> as.data.frame.table()
tabListMult(cp) |> as.data.frame.table()
## Not run:
# Bayesian networks can be created as
bn.uG <- grain(pt)
bn.daG <- grain(cp)
# The steps above are wrapped into a convenience method which
# builds a network from at graph and data.
bn.uG <- grain(uG, data=lizard)
bn.daG <- grain(daG, data=lizard)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.