Nothing
Code
print(VarCorr(mod), digits = 2)
Output
Groups Name Std.Dev. Variance
sid:school abil.sid 0.24 0.055
school abil.sid 0.21 0.046
Residual 0.37 0.137
Code
round(confint(mod, parm = "beta"), 2)
Output
2.5 % 97.5 %
as.factor(item)1 0.52 0.77
as.factor(item)2 0.48 0.72
as.factor(item)3 0.42 0.67
Code
round(confint(mod, parm = "lambda"), 2)
Output
2.5 % 97.5 %
lambda1 0.63 1.48
lambda2 0.56 1.49
Code
round(confint(mod, parm = "theta"), 2)
Output
2.5 % 97.5 %
theta1 0.26 1.00
theta2 0.29 0.86
Code
print(summary(mod2), digits = 2)
Output
GALAMM fit by maximum marginal likelihood.
Formula: y ~ 0 + as.factor(item) + (0 + abil.sid | school/sid)
Data: IRTsub
Control: galamm_control(reduced_hessian = TRUE)
AIC BIC logLik deviance df.resid
403.1 432.8 -193.6 387.1 292
Scaled residuals:
Min 1Q Median 3Q Max
-1.75 -0.78 0.29 0.60 1.82
Lambda:
abil.sid SE
lambda1 1.0 .
lambda2 1.1 0.19
lambda3 1.0 0.22
Random effects:
Groups Name Variance Std.Dev.
sid:school abil.sid 0.055 0.24
school abil.sid 0.046 0.21
Residual 0.137 0.37
Number of obs: 300, groups: sid:school, 237; school, 26
Fixed effects:
Estimate Std. Error t value Pr(>|t|)
as.factor(item)1 0.65 0.063 10.3 1.2e-24
as.factor(item)2 0.60 0.062 9.6 6.2e-22
as.factor(item)3 0.55 0.063 8.6 5.9e-18
Code
print(VarCorr(mod), digits = 2)
Output
Groups Name Std.Dev. Variance
sid:school abil.sid 0.24 0.055
school abil.sid 0.21 0.046
Residual 0.37 0.137
Code
round(confint(mod, parm = "beta"), 2)
Output
2.5 % 97.5 %
as.factor(item)1 0.52 0.77
as.factor(item)2 0.48 0.72
as.factor(item)3 0.42 0.67
Code
round(confint(mod, parm = "lambda"), 2)
Output
2.5 % 97.5 %
lambda1 0.63 1.48
lambda2 0.56 1.49
Code
round(confint(mod, parm = "theta"), 2)
Output
2.5 % 97.5 %
theta1 0.26 1.00
theta2 0.29 0.86
Code
print(summary(mod2), digits = 2)
Output
GALAMM fit by maximum marginal likelihood.
Formula: y ~ 0 + as.factor(item) + (0 + abil.sid | school/sid)
Data: IRTsub
Control: galamm_control(reduced_hessian = TRUE)
AIC BIC logLik deviance df.resid
403.1 432.8 -193.6 387.1 292
Scaled residuals:
Min 1Q Median 3Q Max
-1.75 -0.78 0.29 0.60 1.82
Lambda:
abil.sid SE
lambda1 1.0 .
lambda2 1.1 0.19
lambda3 1.0 0.22
Random effects:
Groups Name Variance Std.Dev.
sid:school abil.sid 0.055 0.23
school abil.sid 0.046 0.21
Residual 0.137 0.37
Number of obs: 300, groups: sid:school, 237; school, 26
Fixed effects:
Estimate Std. Error t value Pr(>|t|)
as.factor(item)1 0.65 0.063 10.3 1.2e-24
as.factor(item)2 0.60 0.062 9.6 6.2e-22
as.factor(item)3 0.55 0.063 8.6 5.9e-18
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.