Nothing
Code
print(summary(kyps.model), digits = 2)
Output
GALAMM fit by maximum marginal likelihood.
Formula: esteem ~ as.factor(time) + (0 + hs | hid) + (0 + ms | mid)
Data: KYPSsim
Control:
galamm_control(optim_control = list(maxit = 1), maxit_conditional_modes = 1)
AIC BIC logLik deviance df.resid
24141.8 24222.7 -12059.9 24119.8 11483
Scaled residuals:
Min 1Q Median 3Q Max
-3.46 -0.57 0.03 0.64 3.52
Lambda:
ms SE hs SE
lambda1 1.0 . . .
lambda2 1.1 0.21 . .
lambda3 1.0 0.40 1.00 .
lambda4 1.0 0.43 0.98 0.056
Random effects:
Groups Name Variance Std.Dev.
hid hs 0.39 0.63
mid ms 0.58 0.76
Residual 0.40 0.63
Number of obs: 11494, groups: hid, 860; mid, 104
Fixed effects:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.071 0.0028 25.457 5.9e-143
as.factor(time)2 0.030 0.6255 0.048 9.6e-01
as.factor(time)3 0.013 1.1704 0.011 9.9e-01
as.factor(time)4 0.014 1.2638 0.011 9.9e-01
Code
print(summary(kyps.model), digits = 2)
Output
GALAMM fit by maximum marginal likelihood.
Formula: esteem ~ 1 + ms:time2 + (1 | sid)
Data: subset(KYPSsim, time %in% c(1, 2))
Control:
galamm_control(optim_control = list(maxit = 1), maxit_conditional_modes = 1)
AIC BIC logLik deviance df.resid
17612.0 17645.3 -8801.0 17602.0 5749
Scaled residuals:
Min 1Q Median 3Q Max
-2.18 -0.36 0.21 0.77 2.51
Lambda:
ms SE
lambda1 1.0 .
lambda2 1.1 0.016
Random effects:
Groups Name Variance Std.Dev.
sid (Intercept) 2.02 1.42
Residual 0.35 0.59
Number of obs: 5754, groups: sid, 2924
Fixed effects:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.69 0.021 81 0
ms:time2 0.75 0.011 67 0
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.