Nothing
#' Class "galamm"
#'
#' An S3 class for objects returned by [galamm()].
#' Contains information about the fitted model, random effects, parameters, and
#' smooth terms.
#'
#' @section Components:
#' * `call`: the matched call used when fitting the model.
#' * `random_effects`: a list with:
#' * `b`: random effects in original parametrization.
#' * `u`: random effects standardized to have identity covariance matrix.
#' * `model`: a list containing:
#' * `deviance`: deviance of final model.
#' * `deviance_residuals`: deviance residuals.
#' * `df`: degrees of freedom.
#' * `family`: one or more family objects.
#' * `factor_interactions`: list of formulas for latent-observed interactions.
#' * `fit`: fitted values.
#' * `fit_population`: fitted values excluding random effects.
#' * `hessian`: Hessian matrix of the final model.
#' * `lmod`: linear model object from [lme4::lFormula()].
#' * `loglik`: log-likelihood of the final model.
#' * `n`: number of observations.
#' * `pearson_residual`: Pearson residuals.
#' * `reduced_hessian`: logical; whether full Hessian or reduced version.
#' * `response`: numeric vector of response values.
#' * `weights_object`: object with weights (or `NULL`).
#' * `parameters`: a list with model parameters and metadata:
#' * `beta_inds`: indices of fixed regression coefficients.
#' * `dispersion_parameter`: dispersion parameters.
#' * `lambda_dummy`: dummy factor loading matrix.
#' * `lambda_inds`: indices of factor loadings.
#' * `lambda_interaction_inds`: indices of latent-observed interactions.
#' * `parameter_estimates`: numeric vector of parameter estimates.
#' * `parameter_names`: names of all parameters.
#' * `theta_inds`: indices of variance components (Cholesky entries).
#' * `weights_inds`: indices of estimated weights.
#' * `gam`: list of smooth term info (empty list if none).
#'
#' @docType class
#' @name galammObject
#' @family modeling functions
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.