gam.hp | R Documentation |
Hierarchical Partitioning of Adjusted R2 and Explained Deviance for Generalized Additive Models
gam.hp(mod, iv = NULL, type = "dev", commonality = FALSE)
mod |
Fitted "gam" model objects. |
iv |
optional The relative importance of predictor groups will be assessed. The input for iv should be a list, where each element contains the names of variables belonging to a specific group. These variable names must correspond to the predictor variables defined in the model (mod). |
type |
The type of R-square of gam, either "dev" or "adjR2", in which "dev" is explained deviance and "adjR2" is adjusted R-square, the default is "dev". |
commonality |
Logical; If TRUE, the result of commonality analysis (2^N-1 fractions for N predictors) is shown, the default is FALSE. |
This function conducts hierarchical partitioning to calculate the individual contributions of each predictor towards total adjusted R2 and explained deviance for Generalized Additive Models. The adjusted R2 and explained deviance are is the output of summary.gam()in mgcv package.
dev |
The R2 for the full model. |
hierarchical.partitioning |
A matrix containing individual effects and percentage of individual effects towards total adjusted R2 and explained deviance for each predictor. |
Jiangshan Lai lai@njfu.edu.cn
Lai J.,Tang J., Li T., Zhang A.,Mao L.(2024)Evaluating the relative importance of predictors in Generalized Additive Models using the gam.hp R package.Plant Diversity,46(4):542-546<DOI:10.1016/j.pld.2024.06.002>
Lai J.,Zhu W., Cui D.,Mao L.(2023)Extension of the glmm.hp package to Zero-Inflated generalized linear mixed models and multiple regression.Journal of Plant Ecology,16(6):rtad038<DOI:10.1093/jpe/rtad038>
Lai J.,Zou Y., Zhang S.,Zhang X.,Mao L.(2022)glmm.hp: an R package for computing individual effect of predictors in generalized linear mixed models.Journal of Plant Ecology,15(6):1302-1307<DOI:10.1093/jpe/rtac096>
Lai J.,Zou Y., Zhang J.,Peres-Neto P.(2022) Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package.Methods in Ecology and Evolution,13(4):782-788<DOI:10.1111/2041-210X.13800>
Chevan, A. & Sutherland, M. (1991). Hierarchical partitioning. American Statistician, 45, 90-96. doi:10.1080/00031305.1991.10475776
Nimon, K., Oswald, F.L. & Roberts, J.K. (2013). Yhat: Interpreting regression effects. R package version 2.0.0.
library(mgcv)
mod1 <- gam(Sepal.Length ~ s(Petal.Length) + s(Petal.Width) + Sepal.Width,data = iris)
summary(mod1)
gam.hp(mod1)
gam.hp(mod1,type="adjR2")
gam.hp(mod1,commonality=TRUE)
iv <- list(env1=c("s(Petal.Length)","s(Petal.Width)"),env2="Sepal.Width")
gam.hp(mod1,iv,type="adjR2")
gam.hp(mod1,iv,commonality=TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.