gamboostLSS: Boosting Methods for 'GAMLSS'
Version 2.0-0

Boosting models for fitting generalized additive models for location, shape and scale ('GAMLSS') to potentially high dimensional data.

AuthorBenjamin Hofner, Andreas Mayr, Nora Fenske, Janek Thomas, Matthias Schmid
Date of publication2017-05-05 21:27:09 UTC
MaintainerBenjamin Hofner <benjamin.hofner@pei.de>
LicenseGPL-2
Version2.0-0
URL For source code development versions and issue tracker see https://github.com/boost-R/gamboostLSS
Package repositoryView on CRAN
InstallationInstall the latest version of this package by entering the following in R:
install.packages("gamboostLSS")

Getting started

Package overview
README.md

Popular man pages

as.families: Include 'gamlss' families in the boosting framework of...
families: Families for GAMLSS models
gamboostLSS-package: Boosting algorithms for GAMLSS
india: Malnutrition of Children in India (DHS, 1998-99)
mboostLSS: Fitting GAMLSS by Boosting
methods: Methods for mboostLSS
stabsel.mboostLSS: Stability Selection
See all...

All man pages Function index File listing

Man pages

as.families: Include 'gamlss' families in the boosting framework of...
cvrisk: Cross-Validation
families: Families for GAMLSS models
gamboostLSS_intern: Call internal functions.
gamboostLSS-package: Boosting algorithms for GAMLSS
india: Malnutrition of Children in India (DHS, 1998-99)
mboostLSS: Fitting GAMLSS by Boosting
methods: Methods for mboostLSS
stabsel.mboostLSS: Stability Selection
weighted_median: Weighted Median

Functions

BetaLSS Man page Source code
BetaMu Man page Source code
BetaPhi Man page Source code
Families Man page Source code
GammaLSS Man page Source code
GammaMu Man page Source code
GammaSigma Man page Source code
GaussianLSS Man page Source code
GaussianMu Man page Source code
GaussianSigma Man page Source code
LogLogLSS Man page Source code
LogLogMu Man page Source code
LogLogSigma Man page Source code
LogNormalLSS Man page Source code
LogNormalMu Man page Source code
LogNormalSigma Man page Source code
NBinomialLSS Man page Source code
NBinomialMu Man page Source code
NBinomialSigma Man page Source code
PI Man page
StudentTDf Man page Source code
StudentTLSS Man page Source code
StudentTMu Man page Source code
StudentTSigma Man page Source code
WeibullLSS Man page Source code
WeibullMu Man page Source code
WeibullSigma Man page Source code
ZINBLSS Man page Source code
ZIPoLSS Man page Source code
[.mboostLSS Man page
as.families Man page Source code
blackboostLSS Man page Source code
check Source code
check_stabilization Source code
check_timeformula Source code
check_y_family Source code
coef.glmboostLSS Man page Source code
coef.mboostLSS Man page Source code
cvrisk Man page
cvrisk.mboostLSS Man page Source code
cvrisk.nc_mboostLSS Man page Source code
do_trace Source code
extract_parameter Source code
families Man page
fitted.mboostLSS Man page Source code
gamboostLSS Man page Source code
gamboostLSS-package Man page
gamboostLSS_intern Man page Source code
gamlss.Families Man page Source code
gamlss1parMu Man page Source code
gamlss2parFam Source code
gamlss2parMu Man page Source code
gamlss2parSigma Man page Source code
gamlss3parFam Source code
gamlss3parMu Man page Source code
gamlss3parNu Man page Source code
gamlss3parSigma Man page Source code
gamlss4parFam Source code
gamlss4parMu Man page Source code
gamlss4parNu Man page Source code
gamlss4parSigma Man page Source code
gamlss4parTau Man page Source code
get_data Source code
get_families_name Source code
get_pdf Source code
get_qfun Source code
get_qfun.character Source code
get_qfun.mboostLSS Source code
glmboostLSS Man page Source code
india Man page
india.bnd Man page
make.grid Man page Source code
mboostLSS Man page Source code
mboostLSS_fit Man page Source code
mean_mod Source code
model.weights Man page Source code
model.weights.default Man page Source code
model.weights.mboostLSS Man page Source code
mstop.cvriskLSS Man page Source code
mstop.mboostLSS Man page Source code
mstop.oobag Man page Source code
myApply Source code
onLoad Source code
options Man page
plot.cvriskLSS Man page Source code
plot.gamboostLSS Man page Source code
plot.glmboostLSS Man page Source code
plot.nc_cvriskLSS Man page Source code
plot.predint Man page Source code
predict.mboostLSS Man page Source code
predint Man page
print.cvriskLSS Source code
print.mboostLSS Man page Source code
qBeta Source code
qGamma Source code
qLogNormal Source code
qNBinomial Source code
qNormal Source code
qT Source code
qWeibull Source code
rescale_weights Source code
risk Man page
risk.mboostLSS Man page Source code
risk.nc_mboostLSS Source code
selected Man page
selected.mboostLSS Man page Source code
selected.stabsel_mboostLSS Man page Source code
stab_ngrad Man page
stabilize_ngrad Man page
stabilize_ngradient Man page Source code
stabsel.mboostLSS Man page Source code
summary.mboostLSS Man page Source code
update.mboostLSS Man page Source code
weighted.median Man page Source code
weighted.sd Source code

Files

inst
inst/CITATION
inst/NEWS.Rd
inst/doc
inst/doc/gamboostLSS_Tutorial.R
inst/doc/gamboostLSS_Tutorial.pdf
inst/doc/gamboostLSS_Tutorial.Rnw
tests
tests/regtest-stabilization.R
tests/regtest-noncyclic_fitting.R
tests/regtest-mstop.R
tests/regtest-stabsel.R
tests/regtest-families.R
tests/regtest-glmboostLSS.R
tests/regtest-gamboostLSS.R
tests/bugfixes.R
NAMESPACE
data
data/india.bnd.RData
data/india.RData
R
R/gamboostLSS_intern.R
R/helpers.R
R/families.R
R/methods.R
R/cvrisk.R
R/mboostLSS.R
R/as.families.R
R/cvrisk.nc_mboostLSS.R
R/AAA.R
vignettes
vignettes/fig-crossvalidation.pdf
vignettes/bib.bib
vignettes/gamboostLSS_Tutorial.Rnw
README.md
MD5
build
build/vignette.rds
DESCRIPTION
ChangeLog
man
man/families.Rd
man/mboostLSS.Rd
man/as.families.Rd
man/stabsel.mboostLSS.Rd
man/gamboostLSS-package.Rd
man/weighted_median.Rd
man/india.Rd
man/cvrisk.Rd
man/gamboostLSS_intern.Rd
man/methods.Rd
gamboostLSS documentation built on May 19, 2017, 9:01 p.m.

Questions? Problems? Suggestions? Tweet to @rdrrHQ or email at ian@mutexlabs.com.

Please suggest features or report bugs in the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.