Nothing
########## R script: effTypesFromMCMC ##########
# For classification of a generalised additive
# model fit using Markov chain Monte Carlo (MCMC)
# samples from the Bayesian gamsel-type model fit.
# Last changed: 03 AUG 2023
effTypesFromMCMC <- function(gammaBetaMCMC,gammaUMCMC,lowerMakesSparser)
{
# Determine the number of predictors and the MCMC sample size:
numPred <- ncol(gammaBetaMCMC)
if (is.null(gammaUMCMC)) dGeneral <- 0
if (!is.null(gammaUMCMC)) dGeneral <- ncol(gammaUMCMC)
dLinear <- numPred - dGeneral
nMCMC <- nrow(gammaBetaMCMC)
# Set up the effect type character string with "zero"
# starting values:
effectTypesHat <- rep("zero",numPred)
# Loop through the "beta" MCMC sample values
# and update according to the spike at zero
# not being below a threshold value:
for (iPred in 1:numPred)
{
if (mean(gammaBetaMCMC[,iPred])>(1-lowerMakesSparser))
effectTypesHat[iPred] <- "linear"
}
if (dGeneral>0)
{
for (jNon in 1:dGeneral)
{
if (mean(gammaUMCMC[,jNon])>(1-lowerMakesSparser))
effectTypesHat[dLinear+jNon] <- "nonlinear"
}
}
# Return the vector of estimated effect types:
return(effectTypesHat)
}
############ End of effTypesFromMCMC ############
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.