View source: R/garchx-source-code.R
coef.garchx | R Documentation |
Extraction functions for objects of class 'garchx'
## S3 method for class 'garchx' coef(object, ...) ## S3 method for class 'garchx' fitted(object, as.zoo = TRUE, ...) ## S3 method for class 'garchx' logLik(object, ...) ## S3 method for class 'garchx' nobs(object, ...) ## S3 method for class 'garchx' predict(object, n.ahead = 10, newxreg = NULL, newindex = NULL, n.sim = NULL, verbose = FALSE, ...) ## S3 method for class 'garchx' print(x, ...) ## S3 method for class 'garchx' quantile(x, probs=0.025, names = TRUE, type = 7, as.zoo = TRUE, ...) ## S3 method for class 'garchx' residuals(object, as.zoo = TRUE, ...) ## S3 method for class 'garchx' toLatex(object, digits = 4, ...) ## S3 method for class 'garchx' vcov(object, vcov.type = NULL, ...)
object |
an object of class 'garchx' |
x |
an object of class 'garchx' |
as.zoo |
logical. If |
n.ahead |
|
newxreg |
|
newindex |
|
n.sim |
|
verbose |
|
probs |
|
names |
|
type |
|
digits |
|
vcov.type |
|
... |
additional arguments |
coef: |
numeric vector containing parameter estimates |
fitted: |
fitted conditional variance |
logLik: |
log-likelihood (normal density) |
nobs: |
the number of observations used in the estimation |
predict: |
a |
print: |
print of the estimation results |
quantile: |
the fitted quantiles, i.e. the conditional standard deviation times the empirical quantile of the standardised innovations |
residuals: |
standardised residuals |
vcov: |
coefficient variance-covariance matrix |
Genaro Sucarrat, http://www.sucarrat.net/
Christian Francq and Le Quien Thieu (2018): 'QML inference for volatility models with covariates', Econometric Theory, doi:10.1017/S0266466617000512
garchx
, garchxSim
, zoo
##simulate from a garch(1,1): set.seed(123) y <- garchxSim(1000) ##estimate garch(1,1) model: mymod <- garchx(y) ##print estimation results: print(mymod) ##extract coefficients: coef(mymod) ##extract and store conditional variances: sigma2hat <- fitted(mymod) ##extract log-likelihood: logLik(mymod) ##extract and store standardised residuals: etahat <- residuals(mymod) ##extract coefficient variance-covariance matrix: vcov(mymod) ##generate predictions: predict(mymod)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.