View source: R/main_simulate.R
gas_simulate | R Documentation |
A function for simulation of generalized autoregressive score (GAS) models of Creal et al. (2013) and Harvey (2013).
Instead of supplying arguments about the model, the function can be applied to the gas
object obtained by the gas()
function.
gas_simulate(
gas_object = NULL,
t_sim = 1L,
x_sim = NULL,
distr = NULL,
param = NULL,
scaling = "unit",
regress = "joint",
n = NULL,
p = 1L,
q = 1L,
par_static = NULL,
par_link = NULL,
par_init = NULL,
coef_est = NULL
)
gas_object |
An optional GAS estimate, i.e. a list of S3 class |
t_sim |
A number of observations to simulate. |
x_sim |
Exogenous variables used for simulations. For a single variable common for all time-varying parameters, a numeric vector. For multiple variables common for all time-varying parameters, a numeric matrix with observations in rows. For individual variables for each time-varying parameter, a list of numeric vectors or matrices in the above form. The number of observation must be equal to |
distr , param , scaling , regress , n , p , q , par_static , par_link , par_init , coef_est |
When |
A list
of S3 class gas_simulate
with components:
data$x_sim |
The exogenous variables used in simulation. |
model$distr |
The conditional distribution. |
model$param |
The parametrization of the conditional distribution. |
model$scaling |
The scaling function. |
model$regress |
The specification of the regression and dynamic equation. |
model$t_sim |
The length of the simulated time series. |
model$n |
The dimension of the model. |
model$m |
The number of exogenous variables. |
model$p |
The score order. |
model$q |
The autoregressive order. |
model$par_static |
The static parameters. |
model$par_link |
The parameters with the logarithmic/logistic links. |
model$par_init |
The initial values of the time-varying parameters. |
model$coef_est |
The estimated coefficients. |
simulation$y_sim |
The simulated time series. |
simulation$par_tv_sim |
The simulated time-varying parameters. |
simulation$score_tv_sim |
The simulated scores. |
Supported generic functions for S3 class gas_simulate
include summary()
ans plot()
.
Creal, D., Koopman, S. J., and Lucas, A. (2013). Generalized Autoregressive Score Models with Applications. Journal of Applied Econometrics, 28(5), 777–795. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1002/jae.1279")}.
Harvey, A. C. (2013). Dynamic Models for Volatility and Heavy Tails: With Applications to Financial and Economic Time Series. Cambridge University Press. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1017/cbo9781139540933")}.
gas()
# Simulate GAS model based on the negative binomial distribution
sim_negbin <- gas_simulate(t_sim = 50, distr = "negbin", reg = "sep",
coef_est = c(2.60, 0.02, 0.95, 0.03))
sim_negbin
# Plot the simulated time series
plot(sim_negbin)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.