View source: R/glaguerre.quadrature.rules.R
glaguerre.quadrature.rules | R Documentation |
This function returns a list with n elements containing the order k quadrature rule data frame for the generalized Laguerre polynomials for orders k = 1,\;2,\; … ,\;n.
glaguerre.quadrature.rules(n,alpha,normalized=FALSE)
n |
integer value for the highest order |
alpha |
numeric value for the polynomial parameter |
normalized |
boolean value. if TRUE rules are for orthonormal polynomials, otherwise they are for orthgonal polynomials |
An order k quadrature data frame is a named data frame that contains
the roots and abscissa values of the corresponding order k orthogonal polynomial.
The column with name x
contains the roots or zeros and
the column with name w
contains the weights.
A list with n elements each of which is a quadrature rule data frame
1 |
Quadrature rule for the order 1 generalized Laguerre polynomial |
2 |
Quadrature rule for the order 2 generalized Laguerre polynomial |
...
n |
Quadrature rule for the order n generalized Laguerre polynomial |
Frederick Novomestky fnovomes@poly.edu
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992. Numerical Recipes in C, Cambridge University Press, Cambridge, U.K.
Stroud, A. H., and D. Secrest, 1966. Gaussian Quadrature Formulas, Prentice-Hall, Englewood Cliffs, NJ.
quadrature.rules
,
glaguerre.quadrature
### ### generate a list of quadrature rule data frames for ### the generalized orthogonal Laguerre polynomials ### of orders 1 to 5 ### polynomial parameter is 1.0 ### orthogonal.rules <- glaguerre.quadrature.rules( 5, 1 ) print( orthogonal.rules ) ### ### generate a list of quadrature rule data frames for ### the generalized orthonormal Laguerre polynomials ### of orders 1 to 5 ### polynomial parameter is 1.0 ### orthonormal.rules <- glaguerre.quadrature.rules( 5, 1, TRUE ) print( orthonormal.rules )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.