basehaz.gbm | R Documentation |
Computes the Breslow estimator of the baseline hazard function for a proportional hazard regression model.
basehaz.gbm(t, delta, f.x, t.eval = NULL, smooth = FALSE, cumulative = TRUE)
t |
The survival times. |
delta |
The censoring indicator. |
f.x |
The predicted values of the regression model on the log hazard scale. |
t.eval |
Values at which the baseline hazard will be evaluated. |
smooth |
If |
cumulative |
If |
The proportional hazard model assumes h(t|x)=lambda(t)*exp(f(x)).
gbm
can estimate the f(x) component via partial likelihood.
After estimating f(x), basehaz.gbm
can compute the a nonparametric
estimate of lambda(t).
A vector of length equal to the length of t (or of length
t.eval
if t.eval
is not NULL
) containing the baseline
hazard evaluated at t (or at t.eval
if t.eval
is not
NULL
). If cumulative
is set to TRUE
then the returned
vector evaluates the cumulative hazard function at those values.
Greg Ridgeway gregridgeway@gmail.com
N. Breslow (1972). "Discussion of 'Regression Models and Life-Tables' by D.R. Cox," Journal of the Royal Statistical Society, Series B, 34(2):216-217.
N. Breslow (1974). "Covariance analysis of censored survival data," Biometrics 30:89-99.
survfit
, gbm
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.