Description Usage Arguments Value Author(s) References See Also Examples
Generation of survival data from a Cox Proportional Hazard Model.
1 |
n |
Sample size. |
model.cens |
Model for censorship. Possible values are "uniform" and "exponential". |
cens.par |
Parameter for the censorship distribution. Must be greater than 0. |
beta |
Regression parameter for the time-fixed covariate. |
covar |
Parameter for generating the time-fixed covariate. An uniform distribution is used. |
An object with two classes, data.frame
and CPHM
.
Artur Araújo, Luís Meira Machado and Susana Faria
Cox, D.R. (1972). Regression models and life tables. Journal of the Royal Statistical Society: Series B, 34(2), 187-202. doi: 10.1111/j.2517-6161.1972.tb00899.x
Meira-Machado L., Faria S. (2014). A simulation study comparing modeling approaches in an illness-death multi-state model. Communications in Statistics - Simulation and Computation, 43(5), 929-946. doi: 10.1080/03610918.2012.718841
Meira-Machado, L., Sestelo M. (2019). Estimation in the progressive illness-death model: a nonexhaustive review. Biometrical Journal, 61(2), 245–263. doi: 10.1002/bimj.201700200
1 2 3 4 5 |
time status covariate
1 0.093355060 1 0.74591486
2 0.483316419 1 0.54393098
3 0.310921504 0 0.32592446
4 0.170772120 0 0.83541308
5 0.290645495 0 0.02046933
6 0.062827879 1 0.96561525
7 0.228600540 1 0.37468999
8 0.821627631 1 0.16619197
9 0.150632126 1 0.57336521
10 0.181897536 1 0.66088332
11 0.299761568 0 0.53281876
12 0.176367153 1 0.91747491
13 0.130438638 0 0.21726206
14 0.007421759 1 0.84614525
15 0.117738733 1 0.68191348
16 0.098838590 1 0.46421456
17 0.438045850 1 0.18512968
18 0.453673607 1 0.53478101
19 0.353637146 0 0.40440112
20 1.400246214 1 0.16540133
Call:
coxph(formula = Surv(time, status) ~ covariate, data = cphmdata)
n= 1000, number of events= 806
coef exp(coef) se(coef) z Pr(>|z|)
covariate 2.4044 11.0713 0.1419 16.95 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
exp(coef) exp(-coef) lower .95 upper .95
covariate 11.07 0.09032 8.384 14.62
Concordance= 0.679 (se = 0.01 )
Likelihood ratio test= 296.6 on 1 df, p=<2e-16
Wald test = 287.3 on 1 df, p=<2e-16
Score (logrank) test = 307.4 on 1 df, p=<2e-16
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.