diab | R Documentation |
These data consist of observations on 442 patients, with the response of interest being a quantitative measure of disease progression one year after baseline.
There are ten baseline variables: age, sex, body-mass index (bmi
), average blood pressure (map
)
and six blood serum measurements.
data("diab")
A data frame with 442 observations on the following 11 variables.
prog
disease progression, a numeric vector
age
age, a numeric vector
sex
integer, a numeric vector
bmi
body mass index, a numeric vector
map
mean arterial blood pressure, a numeric vector
tc
blood serum TC, a numeric vector
ldl
blood serum low-density lipoprotein ("bad cholersterol"), a numeric vector
hdl
blood serum high-density lipoprotein ("good cholersterol"), a numeric vector
tch
blood serum TCH, a numeric vector
ltg
blood serum lamotrigine, a numeric vector
glu
blood serum glucose, a numeric vector
Efron & Hastie describe their analysis using the centered predictor variables standardized to unit L2 norm.
ridge
does not (yet) provide this scaling.
The dataset was taken from the web site for Efron & Hastie (2021), Computer Age Statistical Inference, https://hastie.su.domains/CASI_files/DATA/diabetes.csv.
Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least Angle Regression. The Annals of Statistics, 32(2), 407-499. \Sexpr[results=rd]{tools:::Rd_expr_doi("https://doi.org/10.1214/009053604000000067")}
Efron, B., & Hastie, T. (2021). Computer Age Statistical Inference, Student Edition: Algorithms, Evidence, and Data Science, Cambridge University Press. \Sexpr[results=rd]{tools:::Rd_expr_doi("https://doi.org/10.1017/9781108914062")}
data(diab)
## maybe str(diab) ; plot(diab) ...
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.