| diab | R Documentation |
These data consist of observations on 442 patients, with the response of interest being a quantitative measure of disease progression one year after baseline.
There are ten baseline variables: age, sex, body-mass index (bmi), average blood pressure (map)
and six blood serum measurements.
data("diab")
A data frame with 442 observations on the following 11 variables.
progdisease progression, a numeric vector
ageage, a numeric vector
sexinteger, a numeric vector
bmibody mass index, a numeric vector
mapmean arterial blood pressure, a numeric vector
tcblood serum TC, a numeric vector
ldlblood serum low-density lipoprotein ("bad cholersterol"), a numeric vector
hdlblood serum high-density lipoprotein ("good cholersterol"), a numeric vector
tchblood serum TCH, a numeric vector
ltgblood serum lamotrigine, a numeric vector
glublood serum glucose, a numeric vector
Efron & Hastie describe their analysis using the centered predictor variables standardized to unit L2 norm.
ridge does not (yet) provide this scaling.
The dataset was taken from the web site for Efron & Hastie (2021), Computer Age Statistical Inference, https://hastie.su.domains/CASI_files/DATA/diabetes.csv.
Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least Angle Regression. The Annals of Statistics, 32(2), 407-499. \Sexpr[results=rd]{tools:::Rd_expr_doi("https://doi.org/10.1214/009053604000000067")}
Efron, B., & Hastie, T. (2021). Computer Age Statistical Inference, Student Edition: Algorithms, Evidence, and Data Science, Cambridge University Press. \Sexpr[results=rd]{tools:::Rd_expr_doi("https://doi.org/10.1017/9781108914062")}
data(diab)
## maybe str(diab) ; plot(diab) ...
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.