est.variograms: Variogram Estimator

Description Usage Arguments Value Note References See Also Examples

Description

Calculate empirical variogram estimates. An object of class variogram contains empirical variogram estimates which are generated from a point object and a pair object. A variogram object is stored as a data frame containing seven columns: lags, bins, classic, robust,med, trim and n. The length of each vector is equal to the number of lags in the pair object used to create the variogram object, say l. The lags vector contains the lag numbers for each lag, beginning with one (1) and going to the number of lags (l). The bins vector contains the spatial midpoint of each lag. The classic, robust, med and trimmed.mean vectors contain: the classical, robust, median, and trimmed mean, respectively, which are given, respectively, by (see Cressie, 1993, p. 75)

classical

γ_{c}(h)=\frac{1}{n}∑_{(i,j)\in N(h)}(z(x_{i})-z(x_{j}))^{2}

robust,

γ_{m}(h)=\frac{(\frac{1}{n}∑_{(i,j)\in N(h)} (√{|z(x_{i})-z(x_{j})|}))^{4}}{0.457+\frac{0.494}{n}}

median

γ_{me}(h)=\frac{\mbox(median_{(i,j)\in N(h)} (√{|z(x_{i})-z(x_{j})|}))^{4}}{0.457+\frac{0.494}{|N(h)|}}

and trimmed mean

γ_{tm}(h)=\frac{(trimmed.mean_{(i,j)\in N(h)}(√{|z(x_{i})-z(x_{j})|}))^{4}}{0.457+\frac{0.494}{|N(h)|}}

The n vector contains the number |N(h)| of pairs of points in each lag N(h).

Usage

1
est.variograms(point.obj, pair.obj, a1, a2, trim)

Arguments

point.obj

a point object generated by point()

pair.obj

a pair object generated by pair()

a1

a variable to calculate semivariogram for

a2

an optional variable name, if entered cross variograms will be created between a1 and a2

trim

percent of trimmed mean

Value

A variogram object:

lags

vector of lag identifiers

bins

vector of midpoints of each lag

classic

vector of classic variogram estimates for each lag

robust

vector of robust variogram estimates for each lag

med

vector of median variogram estimates for each lag

trimmed.mean

vector of trimmed mean variogram estimates for each lag

n

vector of the number of pairs in each lag

Note

Based on the est.variogram function of the sgeostat package

References

Bardossy, A., 2001. Introduction to Geostatistics. University of Stuttgart.

Cressie, N.A.C., 1993. Statistics for Spatial Data. Wiley.

Majure, J., Gebhardt, A., 2009. sgeostat: An Object-oriented Framework for Geostatistical Modeling in S+. R package version 1.0-23.

Roustant O., Dupuy, D., Helbert, C., 2007. Robust Estimation of the Variogram in Computer Experiments. Ecole des Mines, D<e9>partement 3MI, 158 Cours Fauriel, 42023 Saint-Etienne, France

See Also

point, pair

Examples

1
2
3
4
5
6
library(sgeostat, pos=which(search()=="package:gstat")+1)
data(maas)
maas.point <- point(maas) 
maas.pair <- pair(maas.point, num.lags=24, maxdist=2000) 
maas.v <- est.variograms(maas.point,maas.pair,'zinc',trim=0.1) 
maas.v

geospt documentation built on May 29, 2017, 9:35 p.m.