RMSPE value result of leave-one-out cross validation for rbfST

Description

It generates the RMSPE value which is given by the spatio-temporal radial basis function with smoothing eta and robustness rho parameters.

Usage

1
rbfST.cv1(param, formula, data, n.neigh, func)

Arguments

param

vector starting points (eta and rho respectively) for searching the RMSPE optimum.

formula

formula that defines the dependent variable as a linear model of independent variables (covariates or the principal coordinates); suppose the dependent variable has name z_{st}, for a rbfST detrended use z_{st}~1, for a rbfST with trend, suppose z_{st} is linearly dependent on x and y, use the formula z_{st}~x+y (linear trend).

data

SpatialPointsDataFrame: should contain the spatio-temporal dependent variable, independent variables (statics and/or dynamics), spatial coordinates and the time as an integer or numerical variable.

n.neigh

number of nearest observations that should be used for a rbfST prediction, where nearest is defined in terms of the spatio-temporal locations.

func

spatio-temporal radial basis function; model type: "GAU", "EXPON", "TRI", "TPS", "CRS", "ST", "IM" and "M", are currently available

Value

returns the RMSPE value

See Also

rbfST, rbfST.cv, graph.rbfST

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
require(minqa)
data(croatiadb)
coordinates(croatiadb) <- ~x+y

## Not run: 
rbf.im <- bobyqa(c(0.5, 0.5), rbfST.cv1, lower=c(1e-05,0), upper=c(2,2), 
              formula=MTEMP~X1+X2+X3+X4+X5+X6+X7+X8+X9+X10, data=croatiadb, n.neigh=25, 
              func="IM", control=list(maxfun=50))         

## End(Not run)

# obtained with the optimal values previously estimated
rbfST.cv1(c(0.847050095690357,0.104157855356128), MTEMP~X1+X2+X3+X4+X5+X6+X7+X8+X9+X10, 
           croatiadb, n.neigh=25, func="IM")