gboot_solow | R Documentation |
Performs a spatial boostrap proposed by Solow(1985).
gboot_solow(data,var,model,B)
data |
object of the class geodata. |
var |
object of the class variogram. |
model |
object of the class variomodel. |
B |
number of the bootstrap that will be performed (default B=1000). |
The basic idea involves transforming correlated observation to uncorrelated
quantities, forming a bootstrap sample from these quantities, and transforming back to a
bootstrap sample form the original observations (SOLOW, 1985). Suppose that Z_n
is an n
vector of observations from a realization of a second-order stationary
random process, Z(s_i)
, and the covariance matrix for Z_n
is C
. Suppose
further that E(Z_n)={0_n}
, where {0_n}
is an n
vector of zeroes.
In practice Z_n
can be centered by subtracting an estimate of the stationary mean from
each observation. So, the steps of the algorithm are:
Obtain C
;
Apply the Cholesky decomposition in C
, obtaining C=LL^t
, where
L
is lower triangular;
Obtain U_n=L^{-1}Z_n
;
Sample with replacement {U^*}_n
from U_n - \bar U_n
;
The new data will be {Z^*}_n=L{U^*}_n
;
Calculate the new variogram;
Calculate and save the statistics of interest;
Return to step 4 and repeat the process at least 1000 times.
variogram_boot gives the variogram of each bootstrap.
variogram_or gives the original variogram.
pars_boot gives the estimatives of the nugget, sill, contribution, range and practical range for each bootstrap.
pars_or gives the original estimatives of the nugget, sill, contribution, range and practical range.
Invalid arguments will return an error message.
Diogo Francisco Rossoni dfrossoni@uem.br
Vinicius Basseto Felix felix_prot@hotmail.com
Solow, A. R. (1985). Bootstrapping correlated data. Journal of the International Association for Mathematical Geology, 17(7), 769-775. https://doi.org/10.1007/BF01031616
# Example 1
## transforming the data.frame in an object of class geodata
data<- as.geodata(soilmoisture)
points(data) ## data visualization
var<- variog(data, max.dist = 140) ## Obtaining the variogram
plot(var)
## Fitting the model
mod<- variofit(var,ini.cov.pars = c(2,80),nugget = 2,cov.model = "sph")
lines(mod, col=2, lwd=2) ##fitted model
## Bootstrap procedure
boot<- gboot_solow(data,var,mod,B=10)
## For better Confidence interval, try B=1000
gboot_CI(boot,digits = 4) ## Bootstrap Confidence Interval
gboot_plot(boot) ## Bootstrap Variogram plot
# Example 2
## transforming the data.frame in an object of class geodata
data<- as.geodata(NVDI)
points(data) ## data visualization
var<- variog(data, max.dist = 18) ## Obtaining the variogram
plot(var)
## Fitting the model
mod<- variofit(var,ini.cov.pars = c(0.003,6),nugget = 0.003,cov.model = "gaus")
lines(mod, col=2, lwd=2) ##fitted model
## Bootstrap procedure
boot<- gboot_solow(data,var,mod,B=10)
## For better Confidence interval, try B=1000
gboot_CI(boot,digits = 4) ## Bootstrap Confidence Interval
gboot_plot(boot) ## Bootstrap Variogram plot
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.