A Simplified Approach for Specifying Interventions in gfoRmula

knitr::opts_chunk$set(echo = TRUE)

Starting from version 1.1.0, the \verb|gfoRmula| package supports a simplified approach to specify interventions. This document describes how to specify interventions using this approach. This document assumes that readers have read the long-form package documentation of McGrath et al. (2020).

Note that \verb|gfoRmula| maintains backwards compatibility in the sense that users may continue to specify interventions using the previous approach (i.e., based on specifying the arguments \verb|interventions|, \verb|intvars|, and \verb|int_times|).

Specifying Interventions

To specify interventions, users can supply arguments with the following naming requirements:

For example, an argument with the name \verb|intervention1.A| specifies the first intervention, which intervenes on variable \verb|A|.

Each intervention argument takes as input a list with the following elements:

The example below specifies an "always treat" intervention on \verb|A|: \begin{verbatim} intervention1.A = list(static, rep(1, time_points)) \end{verbatim}

The next example specifies a threshold intervention strategy on \verb|A| with a lower bound of 1: \begin{verbatim} intervention1.A = list(threshold, 1, Inf) \end{verbatim}

The next example specifies a joint intervention on \verb|A1| and \verb|A2| of always treat. Both \verb|A1| and \verb|A2| are intervened on at all time points except the last one. \begin{verbatim} intervention1.A1 = list(static, rep(1, time_points), int_times = 0:(time_points - 2)) intervention1.A2 = list(static, rep(1, time_points), int_times = 0:(time_points - 2)) \end{verbatim}

The next sections illustrate complete examples.

Example 1: Static interventions

library('gfoRmula')
library('data.table')

In this example, we re-perform the analysis in Example 1 in McGrath et al. (2020) using the new intervention specification.

id <- 'id'
time_points <- 7
time_name <- 't0'
covnames <- c('L1', 'L2', 'A')
outcome_name <- 'Y'
outcome_type <- 'survival'
covtypes <- c('binary', 'bounded normal', 'binary')
histories <- c(lagged, lagavg)
histvars <- list(c('A', 'L1', 'L2'), c('L1', 'L2'))
covparams <- list(covmodels = c(L1 ~ lag1_A + lag_cumavg1_L1 + lag_cumavg1_L2 +
                                  L3 + t0,
                                L2 ~ lag1_A + L1 + lag_cumavg1_L1 +
                                  lag_cumavg1_L2 + L3 + t0,
                                A ~ lag1_A + L1 + L2 + lag_cumavg1_L1 +
                                  lag_cumavg1_L2 + L3 + t0))
ymodel <- Y ~ A + L1 + L2 + L3 + lag1_A + lag1_L1 + lag1_L2 + t0
nsimul <- 10000

gform_basic <- gformula(obs_data = basicdata_nocomp, id = id,
                        time_points = time_points,
                        time_name = time_name, covnames = covnames,
                        outcome_name = outcome_name,
                        outcome_type = outcome_type, covtypes = covtypes,
                        covparams = covparams, ymodel = ymodel,
                        histories = histories, histvars = histvars,
                        basecovs = c('L3'), nsimul = nsimul,
                        seed = 1234, 
                        intervention1.A = list(static, rep(0, time_points)),
                        intervention2.A = list(static, rep(1, time_points)), 
                        int_descript = c('Never treat', 'Always treat'))
gform_basic

Example 2: Custom interventions

In this example, we apply a custom intervention that assigns treatment if \verb|L2| is below a certain threshold. We first define the custom intervention function.

example_intervention <- function(newdf, pool, intvar, intvals, time_name, t){
  newdf[, (intvar) := 0]
  newdf[L2 < intvals[[1]], (intvar) := 1]
}

Next, we apply the g-formula with this custom intervention where we consider different thresholds for \verb|L2|.

gform_basic <- gformula(obs_data = basicdata_nocomp, id = id,
                        time_points = time_points,
                        time_name = time_name, covnames = covnames,
                        outcome_name = outcome_name,
                        outcome_type = outcome_type, covtypes = covtypes,
                        covparams = covparams, ymodel = ymodel,
                        histories = histories, histvars = histvars,
                        basecovs = c('L3'), nsimul = nsimul,
                        seed = 1234, 
                        intervention1.A = list(example_intervention, 0.8),
                        intervention2.A = list(example_intervention, 1), 
                        int_descript = c('Treat if L2 < 0.8', 'Treat if L2 < 1'))
gform_basic

References

McGrath S, Lin V, Zhang Z, Petito LC, Logan RW, Hernán MA, Young JG. gfoRmula: an R package for estimating the effects of sustained treatment strategies via the parametric g-formula. Patterns. 2020 Jun 12;1(3).



Try the gfoRmula package in your browser

Any scripts or data that you put into this service are public.

gfoRmula documentation built on Oct. 1, 2024, 9:06 a.m.