README.md

CRAN_Status_Badge

ggcorrplot: Visualization of a correlation matrix using ggplot2

The ggcorrplot package can be used to visualize easily a correlation matrix using ggplot2. It provides a solution for reordering the correlation matrix and displays the significance level on the correlogram. It includes also a function for computing a matrix of correlation p-values. It's inspired from the package corrplot.

Find out more at http://www.sthda.com/english/wiki/ggcorrplot.

Installation and loading

ggcorrplot can be installed from CRAN as follow:

install.packages("ggcorrplot")

Or, install the latest version from GitHub:

# Install
if(!require(devtools)) install.packages("devtools")
devtools::install_github("kassambara/ggcorrplot")
# Loading
library(ggcorrplot)

Getting started

Compute a correlation matrix

The mtcars data set will be used in the following R code. The function cor_pmat() [in ggcorrplot] computes a matrix of correlation p-values.

# Compute a correlation matrix
data(mtcars)
corr <- round(cor(mtcars), 1)
head(corr[, 1:6])
#>       mpg  cyl disp   hp drat   wt
#> mpg   1.0 -0.9 -0.8 -0.8  0.7 -0.9
#> cyl  -0.9  1.0  0.9  0.8 -0.7  0.8
#> disp -0.8  0.9  1.0  0.8 -0.7  0.9
#> hp   -0.8  0.8  0.8  1.0 -0.4  0.7
#> drat  0.7 -0.7 -0.7 -0.4  1.0 -0.7
#> wt   -0.9  0.8  0.9  0.7 -0.7  1.0

# Compute a matrix of correlation p-values
p.mat <- cor_pmat(mtcars)
head(p.mat[, 1:4])
#>               mpg          cyl         disp           hp
#> mpg  0.000000e+00 6.112687e-10 9.380327e-10 1.787835e-07
#> cyl  6.112687e-10 0.000000e+00 1.802838e-12 3.477861e-09
#> disp 9.380327e-10 1.802838e-12 0.000000e+00 7.142679e-08
#> hp   1.787835e-07 3.477861e-09 7.142679e-08 0.000000e+00
#> drat 1.776240e-05 8.244636e-06 5.282022e-06 9.988772e-03
#> wt   1.293959e-10 1.217567e-07 1.222320e-11 4.145827e-05

Correlation matrix visualization

# Visualize the correlation matrix
# --------------------------------
# method = "square" (default)
ggcorrplot(corr)

ggcorrplot: visualize correlation matrix using ggplot2

# method = "circle"
ggcorrplot(corr, method = "circle")

ggcorrplot: visualize correlation matrix using ggplot2


# Reordering the correlation matrix
# --------------------------------
# using hierarchical clustering
ggcorrplot(corr, hc.order = TRUE, outline.col = "white")

ggcorrplot: visualize correlation matrix using ggplot2


# Types of correlogram layout
# --------------------------------
# Get the lower triangle
ggcorrplot(corr, hc.order = TRUE, type = "lower",
     outline.col = "white")

ggcorrplot: visualize correlation matrix using ggplot2

# Get the upeper triangle
ggcorrplot(corr, hc.order = TRUE, type = "upper",
     outline.col = "white")

ggcorrplot: visualize correlation matrix using ggplot2


# Change colors and theme
# --------------------------------
# Argument colors
ggcorrplot(corr, hc.order = TRUE, type = "lower",
   outline.col = "white",
   ggtheme = ggplot2::theme_gray,
   colors = c("#6D9EC1", "white", "#E46726"))

ggcorrplot: visualize correlation matrix using ggplot2


# Add correlation coefficients
# --------------------------------
# argument lab = TRUE
ggcorrplot(corr, hc.order = TRUE, type = "lower",
   lab = TRUE)

ggcorrplot: visualize correlation matrix using ggplot2


# Add correlation significance level
# --------------------------------
# Argument p.mat
# Barring the no significant coefficient
ggcorrplot(corr, hc.order = TRUE,
    type = "lower", p.mat = p.mat)

ggcorrplot: visualize correlation matrix using ggplot2

# Leave blank on no significant coefficient
ggcorrplot(corr, p.mat = p.mat, hc.order = TRUE,
    type = "lower", insig = "blank")

ggcorrplot: visualize correlation matrix using ggplot2



Try the ggcorrplot package in your browser

Any scripts or data that you put into this service are public.

ggcorrplot documentation built on Sept. 12, 2018, 1:04 a.m.