table_parameters | R Documentation |
Functions for inspecting and displaying parameter structures in models built with 'ggdmcModel'.
table_parameters(model_r, parameters_r)
print_parameter_map(model_r)
model_r |
An S4 model object created by |
parameters_r |
Numeric vector of parameter values (for 'table_parameters' only) |
These functions help analyse whether the parameter and the factor are
constructed as BuildModel
specified:
'table_parameters()' creates a tabular representation showing how parameters map to stimuli, responses, and other model components
‘print_parameter_map()' displays the model’s parameter mapping.
Returns a List in matrix form showing how parameters map to model parameters
Prints the parameter mapping structure and returns invisibly as integer status (0 for success)
# Build a model first
model <- BuildModel(
p_map = list(a = "1", v = "S", z = "1", d = "1", sz = "1", sv = "1", t0 = "1",
st0 = "1", s = "1"),
match_map = list(M = list(s1 = "r1", s2 = "r2")),
factors = list(S = c("s1", "s2")),
constants = c(d = 1, s = 1, sv = 1, sz = 0.5, st0 = 0),
accumulators = c("r1", "r2"),
type = "fastdm"
)
# Tabulate a parameter vector to examine how the factor-dependent
# drift rate maps to the condition, s1 and s2.
p_vector <- c(a = 1, sv = 0.2, sz = 0.25, t0 = 0.15, v.s1 = 4, v.s2 = 2, z = .38)
pmat <- table_parameters(model, p_vector)
# Transpose the result to get a more readable format
result <- lapply(pmat, function(x) {
t(x)
})
print(result)
# $s1.r1
# a d s st0 sv sz t0 v z
# r1 1 1 1 0 1 0.5 0.2 0.25 4
# r2 1 1 1 0 1 0.5 0.2 0.25 4
#
# $s1.r2
# a d s st0 sv sz t0 v z
# r1 1 1 1 0 1 0.5 0.2 0.25 4
# r2 1 1 1 0 1 0.5 0.2 0.25 4
#
# $s2.r1
# a d s st0 sv sz t0 v z
# r1 1 1 1 0 1 0.5 0.2 0.15 4
# r2 1 1 1 0 1 0.5 0.2 0.15 4
#
# $s2.r2
# a d s st0 sv sz t0 v z
# r1 1 1 1 0 1 0.5 0.2 0.15 4
# r2 1 1 1 0 1 0.5 0.2 0.15 4
# Print the parameter map
tmp <- print_parameter_map(model)
# All parameters: a d s st0 sv sz t0
# v.s1 v.s2 z
# Core parameters: a d s st0 sv sz t0
# v z
# Free parameters: a t0 v.s1 v.s2 z
# Constant values: d: 1 s: 1 st0: 0 sv: 1 sz: 0.5
# Parameter map:
#
# 1. When the second row is 1, it indicates that the parameter is fixed.
# The internal machinery goes to the 'constant' to find its value. Note
# the constant will be sorted alphabetically.
# 2. When the second row is 0, it indicates that the parameter is free.
# The internal machinery goes to the p_vector to find its value.
# When doing MCMC sampling, a new p_vector is proposed by the sampler at
# every iteration.
# Cell, s1.r1:
# Acc 0: 0 0 1 2 3 4 1 2 4 <- C++ index
# 1 0 0 0 0 0 1 1 1 <- Whether the parameter is fixed
# Acc 1: 0 0 1 2 3 4 1 2 4
# 1 0 0 0 0 0 1 1 1
#
# Cell, s1.r2:
# Acc 0: 0 0 1 2 3 4 1 2 4
# 1 0 0 0 0 0 1 1 1
# Acc 1: 0 0 1 2 3 4 1 2 4
# 1 0 0 0 0 0 1 1 1
#
# Cell, s2.r1:
# Acc 0: 0 0 1 2 3 4 1 3 4
# 1 0 0 0 0 0 1 1 1
# Acc 1: 0 0 1 2 3 4 1 3 4
# 1 0 0 0 0 0 1 1 1
#
# Cell, s2.r2:
# Acc 0: 0 0 1 2 3 4 1 3 4
# 1 0 0 0 0 0 1 1 1
# Acc 1: 0 0 1 2 3 4 1 3 4
# 1 0 0 0 0 0 1 1 1
#
# Cell (ncell = 4): s1.r1 s1.r2 s2.r1 s2.r2
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.