knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
library(ggplot2) library(ggprism) library(patchwork) library(magrittr)
Arguably one of the most popular features of GraphPad Prism is adding p-values to plots. Indeed in Prism 9, GraphPad have added a feature to automatically perform pairwise comparisons and add the resulting p-values with brackets to the graph.
ggprism
includes the add_pvalue()
function to add p-values with or without
brackets to ggplots. This vignette will go through the many ways in which this
function can be used.
This function is a re-written version of stat_pvalue_manual()
from the
ggpubr
package, which itself is
based on the geom_signif()
function from the
ggsignif
package. Compared to
stat_pvalue_manual()
, the add_pvalue()
function is: easier to use, more
robust with less dependencies, and has more customisable brackets.
To add significance brackets to a plot, you need a minimal data.frame with 4 columns and a number of rows corresponding to the number of brackets you want to add. The 4 columns should correspond to these 4 function arguments:
"group1"
)"group2"
)"label"
)"y.position"
)For grouped or faceted data you'll also need a column which is named according to the grouping variable. See the Many more examples section for help with this/examples.
Let's see how this works in practice. First we'll plot the sleep
data set.
str(sleep)
# create a jitter plot of the sleep data set # and indicate the means p <- ggplot(sleep, aes(x = group, y = extra)) + geom_jitter(aes(shape = group), width = 0.1) + stat_summary(geom = "crossbar", fun = mean, colour = "red", width = 0.2) + theme_prism() + theme(legend.position = "none") p
Next we'll perform a t-test and obtain a p-value for the difference between the two means.
# perform a t-test and obtain the p-value result <- t.test(extra ~ group, data = sleep)$p.value result <- signif(result, digits = 3) result
Now we'll construct a p-value data.frame for add_pvalue()
to use.
df_p_val <- data.frame( group1 = "1", group2 = "2", label = result, y.position = 6 )
And finally we'll add this p-value to our plot. Because we have used the
default column names (see above) in our p-value table we don't necessarily
have to specify any arguments of add_pvalue()
. However, here we'll do it
for clarity's sake. Additionally, if your p-value table has special
column names, you will need to specify them in add_pvalue()
.
# add p-value brackets p1 <- p + add_pvalue(df_p_val, xmin = "group1", xmax = "group2", label = "label", y.position = "y.position") # change column names to something silly colnames(df_p_val) <- c("apple", "banana", "some_label", "some_y_position") # add p-value brackets again p2 <- p + add_pvalue(df_p_val, xmin = "apple", xmax = "banana", label = "some_label", y.position = "some_y_position") p1 + p2
# return column names back to default colnames(df_p_val) <- c("group1", "group2", "label", "y.position")
You can easily change how the bracket and label looks. You can make the label
a glue
expression. You can also change the tip length of the bracket.
Lastly, you can flip the label when using coord_flip()
.
# change bracket and label aesthetics p1 <- p + add_pvalue(df_p_val, colour = "red", # label label.size = 8, # label fontface = "bold", # label fontfamily = "serif", # label angle = 45, # label hjust = 1, # label vjust = 2, # label bracket.colour = "blue", # bracket bracket.size = 1, # bracket linetype = "dashed", # bracket lineend = "round") # bracket # use glue expression for label p2 <- p + add_pvalue(df_p_val, label = "p = {label}") # make bracket tips longer and use coord_flip p3 <- p + add_pvalue(df_p_val, tip.length = 0.15, coord.flip = TRUE) + coord_flip() # change bracket tips independently # (make one side disappear and the other longer) p4 <- p + add_pvalue(df_p_val, tip.length = c(0.2, 0)) (p1 + p2) / (p3 + p4)
Even if you don't want brackets, add_pvalue()
is also useful for adding
significance text to plots with the correct/automatic positioning.
In the example above, if you wanted the text but not the bracket, you can just
use the remove.bracket
argument. In this case, you must use the x
argument
to change the x position of the text.
# position label above "group1" p1 <- p + add_pvalue(df_p_val, label = "p = {label}", remove.bracket = TRUE, x = 1) # position label between x = 1 and x = 2 p2 <- p + add_pvalue(df_p_val, label = "p = {label}", remove.bracket = TRUE, x = 1.5) p1 + p2
Here is another example of 'text only' plot using the ToothGrowth
data set.
str(ToothGrowth)
# create a box plot of the ToothGrowth data set p <- ggplot(ToothGrowth, aes(x = factor(dose), y = len)) + geom_boxplot(aes(fill = dose), colour = "black") + theme_prism() + theme(legend.position = "none") p
Next we'll perform two t-tests and compare the means against dose = 0.5
as
a reference group. Then we'll correct the p-values for multiple testing.
# compare means again reference result1 <- t.test(len ~ dose, data = subset(ToothGrowth, dose %in% c(0.5, 1.0)))$p.value result2 <- t.test(len ~ dose, data = subset(ToothGrowth, dose %in% c(0.5, 2.0)))$p.value # Benjamini-Hochberg correction for multiple testing result <- p.adjust(c(result1, result2), method = "BH")
We can now construct a p-value table. Note that in this case we don't need to
to specify a "group2"
column for xmax. This is because text-only p-value
annotations just have an x position (x
) and not an x range (xmin
and xmax
).
# don't need group2 column (i.e. xmax) # instead just specify x position in the same way as y.position df_p_val <- data.frame( group1 = c(0.5, 0.5), group2 = c(1, 2), x = c(2, 3), label = signif(result, digits = 3), y.position = c(35, 35) )
Then we add the p-values to the plot. As before, you can change how the labels look quite easily.
p1 <- p + add_pvalue(df_p_val, xmin = "group1", x = "x", label = "label", y.position = "y.position") p2 <- p + add_pvalue(df_p_val, xmin = "group1", x = "x", label = "p = {label}", y.position = "y.position", label.size = 3.2, fontface = "bold") p1 + p2
If you want the label number format to look nicer you can provide a column name to
label
with plotmath expressions and set parse = TRUE
. This works with or
without brackets.
# plotmath expression to have superscript exponent df_p_val$p.exprs <- paste0("P==1*x*10^", round(log10(df_p_val$label), 0)) # as above but with italics df_p_val$p.exprs.ital <- lapply( paste(round(log10(df_p_val$label), 0)), function(x) bquote(italic("P = 1x10"^.(x))) ) p1 <- p + add_pvalue(df_p_val, xmin = "group1", x = "x", label = "p.exprs", y.position = "y.position", parse = TRUE) p2 <- p + add_pvalue(df_p_val, xmin = "group1", x = "x", label = "p.exprs.ital", y.position = "y.position", parse = TRUE) p1 + p2
rstatix
packageAs add_pvalue()
is ultimately just a rewritten version of
stat_pvalue_manual()
, it works well with the
rstatix
package.
With rstatix
, you can perform the
statistical test and create the p-value table with the appropriate
x and y position automatically, in a single step.
df_p_val <- rstatix::t_test(ToothGrowth, len ~ dose, ref.group = "0.5") %>% rstatix::add_xy_position() p + add_pvalue(df_p_val, label = "p = {p.adj}", remove.bracket = TRUE)
Here we will use add_pvalue()
and
rstatix
to show many more examples
of how to add p-values to different plots.
Compare mean len
depending on supp
. Error bars indicate
1 standard deviation from the mean.
df_p_val <- rstatix::t_test(ToothGrowth, len ~ supp) %>% rstatix::add_x_position() p <- ggplot(ToothGrowth, aes(x = factor(supp), y = len)) + stat_summary(geom = "col", fun = mean) + stat_summary(geom = "errorbar", fun = mean, fun.min = function(x) mean(x) - sd(x), fun.max = function(x) mean(x) + sd(x), width = 0.3) + theme_prism() + coord_cartesian(ylim = c(0, 35)) + scale_y_continuous(breaks = seq(0, 35, 5), expand = c(0, 0)) # normal plot p + add_pvalue(df_p_val, y.position = 30)
Compare mean len
of each dose to dose = 0.5
. Error bars indicate
1 standard deviation from the mean.
df_p_val <- rstatix::t_test(ToothGrowth, len ~ dose, ref.group = "0.5") %>% rstatix::add_xy_position() p <- ggplot(ToothGrowth, aes(x = factor(dose), y = len)) + stat_summary(geom = "col", fun = mean) + stat_summary(geom = "errorbar", fun = mean, fun.min = function(x) mean(x) - sd(x), fun.max = function(x) mean(x) + sd(x), width = 0.3) + theme_prism() + coord_cartesian(ylim = c(0, 40)) + scale_y_continuous(breaks = seq(0, 40, 5), expand = c(0, 0)) # with brackets p1 <- p + add_pvalue(df_p_val, label = "p.adj.signif") # without brackets p2 <- p + add_pvalue(df_p_val, label = "p.adj.signif", remove.bracket = TRUE) p1 + p2
Now, compare overall mean len
(base mean) to the mean len
for each dose
.
Error bars indicate 1 standard deviation from the mean.
df_p_val <- rstatix::t_test(ToothGrowth, len ~ dose, ref.group = "all") p <- ggplot(ToothGrowth, aes(x = factor(dose), y = len)) + stat_summary(geom = "col", fun = mean) + stat_summary(geom = "errorbar", fun = mean, fun.min = function(x) mean(x) - sd(x), fun.max = function(x) mean(x) + sd(x), width = 0.3) + theme_prism() + coord_cartesian(ylim = c(0, 40)) + scale_y_continuous(breaks = seq(0, 40, 5), expand = c(0, 0)) p + add_pvalue(df_p_val, label = "p.adj.signif", y.position = 35)
Now, compare the mean len
for each dose
to some arbitrary value, say
26
in this case. Error bars indicate 1 standard deviation from the mean.
df_p_val <- ToothGrowth %>% rstatix::group_by(factor(dose)) %>% rstatix::t_test(len ~ 1, mu = 26) %>% rstatix::adjust_pvalue(p.col = "p", method = "holm") %>% rstatix::add_significance(p.col = "p.adj") p <- ggplot(ToothGrowth, aes(x = factor(dose), y = len)) + stat_summary(geom = "col", fun = mean) + stat_summary(geom = "errorbar", fun = mean, fun.min = function(x) mean(x) - sd(x), fun.max = function(x) mean(x) + sd(x), width = 0.3) + theme_prism() + coord_cartesian(ylim = c(0, 40)) + scale_y_continuous(breaks = seq(0, 40, 5), expand = c(0, 0)) # remember xmin and x are referring to the column dames in df_p_val p + add_pvalue(df_p_val, xmin = "group1", x = "factor(dose)", y = 37, label = "p.adj.signif")
Compare mean len
across the 3 different dose
. Use the bracket.shorten
argument to slightly shorten side-by-side brackets.
df_p_val <- rstatix::t_test(ToothGrowth, len ~ dose) p <- ggplot(ToothGrowth, aes(x = factor(dose), y = len)) + geom_violin(trim = FALSE) + geom_boxplot(width = 0.2) + theme_prism() + coord_cartesian(ylim = c(0, 45)) + scale_y_continuous(breaks = seq(0, 45, 5), expand = c(0, 0)) p + add_pvalue(df_p_val, y.position = c(44, 41, 44), bracket.shorten = c(0.025, 0, 0.025))
Pairwise comparisons between groups of the ToothGrowth
data set,
grouped according to supp
. The boxplots and the brackets are automatically
coloured according to supp
. Three important points for this graph:
supp
) and the column must contain the groups to
group by (in this case "OJ" or "VC"
.geom_boxplot()
) and not in the ggplot()
function.step.group.by = "supp"
to automatically change the
bracket spacing between different groups.df_p_val <- ToothGrowth %>% rstatix::group_by(supp) %>% rstatix::t_test(len ~ dose) %>% rstatix::add_xy_position() p <- ggplot(ToothGrowth, aes(x = factor(dose), y = len)) + geom_boxplot(aes(fill = supp)) + theme_prism() # remember colour and step.group.by are referring to a column name in df_p_val p + add_pvalue(df_p_val, label = "p = {p.adj}", colour = "supp", fontface = "bold", step.group.by = "supp", step.increase = 0.1, tip.length = 0, bracket.colour = "black", show.legend = FALSE)
Pairwise comparisons within groups of the ToothGrowth
data set,
grouped according to supp
.
df_p_val <- ToothGrowth %>% rstatix::group_by(dose) %>% rstatix::t_test(len ~ supp) %>% rstatix::adjust_pvalue(p.col = "p", method = "bonferroni") %>% rstatix::add_significance(p.col = "p.adj") %>% rstatix::add_xy_position(x = "dose", dodge = 0.8) # important for positioning! p <- ggplot(ToothGrowth, aes(x = factor(dose), y = len)) + geom_boxplot(aes(fill = supp)) + theme_prism() + coord_cartesian(ylim = c(0, 40)) p + add_pvalue(df_p_val, xmin = "xmin", xmax = "xmax", label = "p = {p.adj}", tip.length = 0)
Pairwise comparisons within groups and between groups of the ToothGrowth
data set, grouped according to supp
. You can use bracket.nudge.y
to
slightly adjust the overall y position of the brackets instead of having to
redefine df_p_val2
.
df_p_val1 <- ToothGrowth %>% rstatix::group_by(dose) %>% rstatix::t_test(len ~ supp) %>% rstatix::adjust_pvalue(p.col = "p", method = "bonferroni") %>% rstatix::add_significance(p.col = "p.adj") %>% rstatix::add_xy_position(x = "dose", dodge = 0.8) # important for positioning! df_p_val2 <- rstatix::t_test(ToothGrowth, len ~ dose, p.adjust.method = "bonferroni") %>% rstatix::add_xy_position() p <- ggplot(ToothGrowth, aes(x = factor(dose), y = len)) + geom_boxplot(aes(fill = supp)) + theme_prism() + coord_cartesian(ylim = c(0, 45)) p + add_pvalue(df_p_val1, xmin = "xmin", xmax = "xmax", label = "p = {p.adj}", tip.length = 0) + add_pvalue(df_p_val2, label = "p = {p.adj}", tip.length = 0.01, bracket.nudge.y = 2, step.increase = 0.015)
Facet according to dose
and then compare mean len
between either supp
.
It is important that the p-value table must have a column with the same
name as the faceting variable (in this case "dose"
).
df_p_val <- ToothGrowth %>% rstatix::group_by(dose) %>% rstatix::t_test(len ~ supp) %>% rstatix::add_xy_position() p <- ggplot(ToothGrowth, aes(x = factor(supp), y = len)) + geom_boxplot(width = 0.2) + facet_wrap( ~ dose, scales = "free", labeller = labeller(dose = function(x) paste("dose =", x)) ) + theme_prism() p + add_pvalue(df_p_val)
Facet according to supp
and then compare mean len
between the three dose
.
It is important that the p-value table must have a column with the same
name as the faceting variable (in this case "supp"
).
df_p_val <- ToothGrowth %>% rstatix::group_by(supp) %>% rstatix::t_test(len ~ dose) %>% rstatix::add_xy_position() p <- ggplot(ToothGrowth, aes(x = factor(dose), y = len)) + geom_boxplot(width = 0.4) + facet_wrap(~ supp, scales = "free") + theme_prism() p + add_pvalue(df_p_val)
Facet according to some particular grouping variable called grp
and dose
,
and then compare mean len
between either supp
. It is important that the
p-value table must have columns with the same
names as the two faceting variables (in this case "grp"
and "dose"
).
# add a grouping variable to ToothGrowth tg <- ToothGrowth tg$dose <- factor(tg$dose) tg$grp <- factor(rep(c("grp1", "grp2"), 30)) # construct the p-value table by hand df_p_val <- data.frame( group1 = c("OJ", "OJ"), group2 = c("VC", "VC"), p.adj = c(0.0449, 0.00265), y.position = c(22, 27), grp = c("grp1", "grp2"), dose = c("0.5", "1") ) p <- ggplot(tg, aes(x = factor(supp), y = len)) + geom_boxplot(width = 0.4) + facet_wrap(grp ~ dose, scales = "free") + theme_prism() p + add_pvalue(df_p_val, bracket.nudge.y = 3)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.