ggsurveillance is an R package with helpful tools and ggplot extensions for epidemiology, especially infectious disease surveillance and outbreak investigation. All functions provide tidy functional interfaces for easy integration with the tidyverse. For documentation and vignettes see: ggsurveillance.biostats.dev
geom_epicurve()
: A ggplot geom for plotting epicurves
stat_bin_date()
for date interval (week, month etc.) based binning of case numbers with perfect alignment with i.e. reporting week.scale_y_cases_5er()
for better (case) count axis breaks and positioning.geom_vline_year()
, which automatically detects the turn of the year(s) from the date or datetime axis and draws a vertical line.align_dates_seasonal()
: Align surveillance data for seasonal plots (e.g. flu season).
create_agegroups()
: Create reproducible age groups with highly customizable labels.
geom_epigantt()
: A geom for epigantt plots. Helpful to visualize overlapping time intervals for contact tracing (i.e. hospital outbreaks).
scale_y_discrete_reverse()
which reverses the order of the categorical scale.theme_mod_
functions for ggplot2 theme modifications:
theme_mod_legend_position()
etc. to adjust the legend positions.theme_mod_rotate_x_axis_labels()
etc. for rotating x axis labels.theme_mod_remove_minor_grid()
etc. to remove the minor grid lines (x, y or both) or all grind lines.Additional utilities: geometric_mean()
, expand_counts()
, and more
library(ggplot2)
library(tidyr)
library(outbreaks)
library(ggsurveillance)
sars_canada_2003 |> #SARS dataset from outbreaks
pivot_longer(starts_with("cases"),
names_prefix = "cases_",
names_to = "origin") |>
ggplot(aes(x = date, weight = value, fill = origin)) +
geom_epicurve(date_resolution = "week") +
scale_x_date(date_labels = "W%V'%g", date_breaks = "2 weeks") +
scale_y_cases_5er() +
scale_fill_brewer(type = "qual", palette = 6) +
theme_classic()
library(ggplot2)
library(dplyr)
library(ggsurveillance)
influenza_germany |>
filter(AgeGroup == "00+") |>
align_dates_seasonal(dates_from = ReportingWeek,
date_resolution = "isoweek",
start = 28) -> df_flu_aligned
ggplot(df_flu_aligned, aes(x = date_aligned, y = Incidence)) +
stat_summary(
aes(linetype = "Historical Median (Min-Max)"), data = . %>% filter(!current_season),
fun.data = median_hilow, geom = "ribbon", alpha = 0.3) +
stat_summary(
aes(linetype = "Historical Median (Min-Max)"), data = . %>% filter(!current_season),
fun = median, geom = "line") +
geom_line(
aes(linetype = "2024/25"), data = . %>% filter(current_season), colour = "dodgerblue4", linewidth = 2) +
labs(linetype = NULL) +
scale_x_date(date_labels = "%b'%y") +
theme_bw() +
theme_mod_legend_position(position.inside = c(0.2, 0.8))
library(dplyr)
library(tidyr)
library(ggplot2)
library(ggsurveillance)
# Transform to long format
linelist_hospital_outbreak |>
pivot_longer(
cols = starts_with("ward"),
names_to = c(".value", "num"),
names_pattern = "ward_(name|start_of_stay|end_of_stay)_([0-9]+)",
values_drop_na = TRUE
) -> df_stays_long
linelist_hospital_outbreak |>
pivot_longer(cols = starts_with("pathogen"), values_to = "date") -> df_detections_long
# Plot
ggplot(df_stays_long) +
geom_epigantt(aes(y = Patient, xmin = start_of_stay, xmax = end_of_stay, color = name)) +
geom_point(aes(y = Patient, x = date, shape = "Date of pathogen detection"), data = df_detections_long) +
scale_y_discrete_reverse() +
theme_bw() +
theme_mod_legend_bottom()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.