ggtrendline | R Documentation |
Add trendline and confidence interval of linear or nonlinear regression model to 'ggplot',
by using different models built in the 'ggtrendline()' function.
The function includes the following models:
"line2P" (formula as: y=a*x+b),
"line3P" (y=a*x^2+b*x+c),
"log2P" (y=a*ln(x)+b),
"exp2P" (y=a*exp(b*x)),
"exp3P" (y=a*exp(b*x)+c),
"power2P" (y=a*x^b),
and "power3P" (y=a*x^b+c).
ggtrendline( x, y, model = "line2P", linecolor = "black", linetype = 1, linewidth = 0.6, CI.level = 0.95, CI.fill = "grey60", CI.alpha = 0.3, CI.color = "black", CI.lty = 2, CI.lwd = 0.5, summary = TRUE, show.eq = TRUE, yhat = FALSE, eq.x = NULL, eq.y = NULL, show.Rsquare = TRUE, show.pvalue = TRUE, Pvalue.corrected = TRUE, Rname = 0, Pname = 0, rrp.x = NULL, rrp.y = NULL, text.col = "black", eDigit = 3, eSize = 3, xlab = NULL, ylab = NULL )
x, y |
the x and y arguments provide the x and y coordinates for the 'ggplot'. Any reasonable way of defining the coordinates is acceptable. |
model |
select which model to fit. Default is "line2P". The "model" should be one of c("line2P", "line3P", "log2P", "exp2P", "exp3P", "power2P", "power3P"), their formulas are as follows: |
linecolor |
the color of regression line. Default is "black". |
linetype |
the type of regression line. Default is 1. Notes: linetype can be specified using either text c("blank","solid","dashed","dotted","dotdash","longdash","twodash") or number c(0, 1, 2, 3, 4, 5, 6). |
linewidth |
the width of regression line. Default is 0.6. |
CI.level |
level of confidence interval to use. Default is 0.95. |
CI.fill |
the color for filling the confidence interval. Default is "grey60". |
CI.alpha |
alpha value of filling color of confidence interval. Default is 0.3. |
CI.color |
line color of confidence interval. Default is "black". |
CI.lty |
line type of confidence interval. Default is 2. |
CI.lwd |
line width of confidence interval. Default is 0.5. |
summary |
summarizing the model fits. Default is TRUE. |
show.eq |
whether to show the regression equation, the value is one of c("TRUE", "FALSE"). |
yhat |
whether to add a hat symbol (^) on the top of "y" in equation. Default is FALSE. |
eq.x, eq.y |
equation position. |
show.Rsquare |
whether to show the R-square, the value is one of c("TRUE", "FALSE"). |
show.pvalue |
whether to show the P-value, the value is one of c("TRUE", "FALSE"). |
Pvalue.corrected |
if P-value corrected or not, the value is one of c("TRUE", "FALSE"). |
Rname |
to specify the character of R-square, the value is one of c(0, 1), corresponding to c(r^2, R^2). |
Pname |
to specify the character of P-value, the value is one of c(0, 1), corresponding to c(p, P). |
rrp.x, rrp.y |
the position for R square and P value. |
text.col |
the color used for the equation text. |
eDigit |
the numbers of digits for R square and P value. Default is 3. |
eSize |
font size of R square and P value. Default is 3. |
xlab, ylab |
labels of x- and y-axis. |
The values of each parameter of regression model can be found by typing trendline_sum
function in this package.
The linear models (line2P, line3P, log2P) in this package are estimated by lm
function, while the nonlinear models (exp2P, exp3P, power2P, power3P) are estimated by nls
function (i.e., least-squares method).
No return value (called for side effects).
Ritz C., and Streibig J. C. (2007) Nonlinear Regression with R. Springer.
Greenwell B. M., and Schubert Kabban C. M. (2014) investr: An R Package for Inverse Estimation. The R Journal, 6(1), 90-100.
ggtrendline
, stat_eq
, stat_rrp
, trendline_sum
, nls
, selfStart
# library(ggplot2) library(ggtrendline) x <- c(1, 3, 6, 9, 13, 17) y <- c(5, 8, 11, 13, 13.2, 13.5) ggtrendline(x, y, model = "line2P") # default ggtrendline(x, y, model = "log2P", CI.fill = NA) # CI lines only, without CI filling ggtrendline(x, y, model = "exp2P", linecolor = "blue", linetype = 1, linewidth = 1) # set line ggtrendline(x, y, model = "exp3P", CI.level = 0.99, CI.fill = "red", CI.alpha = 0.1, CI.color = NA, CI.lty = 2, CI.lwd = 1.5) # set CI
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.