gigg
This package implements a Gibbs sampler corresponding to a Group Inverse-Gamma Gamma (GIGG) regression model with adjustment covariates. Hyperparameters in the GIGG prior specification can either be fixed by the user or can be estimated via Marginal Maximum Likelihood Estimation.
If the devtools package is not yet installed, install it first:
install.packages('devtools')
# install the package from Github:
devtools::install_github('umich-cphds/gigg')
Once installed, load the package:
library(gigg)
GIGG regression Gibbs sampler with fixed hyperparameters:
X = concentrated$X
C = concentrated$C
Y = as.vector(concentrated$Y)
grp_idx = concentrated$grps
alpha_inits = concentrated$alpha
beta_inits = concentrated$beta
gf = gigg(X, C, Y, method = "fixed", grp_idx, alpha_inits, beta_inits,
n_burn_in = 500, n_samples = 1000, n_thin = 1,
verbose = TRUE, btrick = FALSE, stable_solve = TRUE)
GIGG regression Gibbs sampler with hyperparameter estimation via Marginal Maximum Likelihood Estimation:
X = concentrated$X
C = concentrated$C
Y = as.vector(concentrated$Y)
grp_idx = concentrated$grps
alpha_inits = concentrated$alpha
beta_inits = concentrated$beta
gf_mmle = gigg(X, C, Y, method = "mmle", grp_idx, alpha_inits, beta_inits,
n_burn_in = 500, n_samples = 1000, n_thin = 1,
verbose = TRUE, btrick = FALSE, stable_solve = TRUE)
Boss, J., Datta, J., Wang, X., Park, S.K., Kang, J., & Mukherjee, B. (2021). Group Inverse-Gamma Gamma Shrinkage for Sparse Regression with Block-Correlated Predictors. arXiv preprint arXiv:2102.10670.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.