View source: R/summary.rankComp.R
summary.rankComp | R Documentation |
Summary method for class "rankComp"
and print method for class
"summary.rankComp"
.
## S3 method for class 'rankComp'
summary(object, n.pick = 10L, n.q = 10L, ...)
## S3 method for class 'summary.rankComp'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
object |
an object of class |
n.pick |
a positive integer specifying the number of units considered to
form the top/bottom based on the alternative index. The default value is |
n.q |
a positive integer specifying the n-quantiles considered
to compute quantile rankings. The default value is |
... |
further arguments passed to or from other methods. |
x |
an object of class |
digits |
number of significant digits to use when printing. |
summary.rankComp
provides details on the ranking comparison between the
reference and the alternative indices stored in the object of class
"rankComp"
. print.summary.rankComp
prints summary information using a
smart digit format for the components.
An object of class "summary.rankComp"
which is a list of components:
par |
a vector storing the values of |
n.unit |
the number of ranked units (by temporal factors if available). |
shift.stats |
a data frame with rows presenting the summary statistics of ranking shifts: minimum, first quartile, median, mean, third quartile, and maximum. |
asr |
a data frame giving the average shift in ranking (ASR)
where |
per |
a data frame giving the percentage of equal rankings (PER)
where |
asq |
the average shift in quantile ranking (by temporal factors if available). This value is similar to the ASR for all units, but using the quantile ranking of two indices. |
For shift.stats
, asr
, and per
, multiple columns will be generated
according to temporal factors if object$time
is not NULL
.
Viet Duong Nguyen, Chiara Gigliarano, Mariateresa Ciommi
Mariani, F., Ciommi, M., and Recchioni, M. C. (2024). Two in One: A New Tool to Combine Two Rankings Based on the Voronoi Diagram. Social Indicators Research, 175, 989–1005.
rankComp
.
data(bli)
# Goalpost normalization
bli.pol = c("neg", "pos", "pos", "pos", "pos", "neg",
"pos", "pos", "pos", "neg", "pos")
bli.norm.2014 <- normalize(inds = bli[, 3:13], method = "goalpost",
ind.pol = bli.pol, time = bli$YEAR,
ref.time = 2014)
# Composite indices
ci.gini <- giniCI(bli.norm.2014, method = "gini",
ci.pol = "pos", time = bli$YEAR, ref.time = 2014,
only.ci = TRUE)
ci.reci <- giniCI(bli.norm.2014, method = "reci", agg = "geo",
ci.pol = "pos", time = bli$YEAR, ref.time = 2014,
only.ci = TRUE)
# Ranking comparison
ci.comp <- rankComp(ci.gini, ci.reci, id = bli$COUNTRY, time = bli$YEAR)
print(ci.comp)
summary(ci.comp)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.