Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## -----------------------------------------------------------------------------
library(giniVarCI)
set.seed(123)
y <- gsample(n = 100, gini = 0.5, distribution = "lognormal")
igini(y)
## -----------------------------------------------------------------------------
#Comparing the computation time for the various estimation methods using R
microbenchmark::microbenchmark(
iginindex(y, method = 1, useRcpp = FALSE),
iginindex(y, method = 2, useRcpp = FALSE),
iginindex(y, method = 3, useRcpp = FALSE),
iginindex(y, method = 4, useRcpp = FALSE),
iginindex(y, method = 5, useRcpp = FALSE),
iginindex(y, method = 6, useRcpp = FALSE),
iginindex(y, method = 7, useRcpp = FALSE),
iginindex(y, method = 8, useRcpp = FALSE),
iginindex(y, method = 9, useRcpp = FALSE),
iginindex(y, method = 10, useRcpp = FALSE)
)
# Comparing the computation time for the various estimation methods using Rcpp
microbenchmark::microbenchmark(
iginindex(y, method = 1),
iginindex(y, method = 2),
iginindex(y, method = 3),
iginindex(y, method = 4),
iginindex(y, method = 5),
iginindex(y, method = 6),
iginindex(y, method = 7),
iginindex(y, method = 8),
iginindex(y, method = 9),
iginindex(y, method = 10) )
## -----------------------------------------------------------------------------
# Comparing the computation time for estimates of the Gini index in various R packages.
microbenchmark::microbenchmark(
igini(y),
laeken::gini(y),
DescTools::Gini(y),
ineq::Gini(y),
REAT::gini(y))
## -----------------------------------------------------------------------------
# Gini index estimation and confidence interval using 'pbootstrap',
igini(y, interval = "pbootstrap")
## -----------------------------------------------------------------------------
# Gini index estimation and confidence interval using 'Bca'.
igini(y, interval = "BCa")
## -----------------------------------------------------------------------------
# Gini index estimation and confidence interval using 'zjackknife'.
igini(y, interval = "zjackknife")
## -----------------------------------------------------------------------------
# Gini index estimation and confidence interval using 'tjackknife'.
igini(y, interval = "tjackknife")
## -----------------------------------------------------------------------------
# Gini index estimation and confidence interval using 'zalinearization'.
igini(y, interval = "zalinearization")
# Gini index estimation and confidence interval using 'zblinearization'.
igini(y, interval = "zblinearization")
## -----------------------------------------------------------------------------
# Gini index estimation and confidence interval using 'talinearization'.
igini(y, interval = "talinearization")
# Gini index estimation and confidence interval using 'tblinearization'.
igini(y, interval = "tblinearization")
## -----------------------------------------------------------------------------
# Gini index estimation and confidence interval using 'ELchisq'.
igini(y, interval = "ELchisq")
## -----------------------------------------------------------------------------
# Gini index estimation and confidence interval using 'ELboot'.
igini(y, interval = "ELboot")
## -----------------------------------------------------------------------------
# Comparisons of variance estimators and confidence intervals.
icompareCI(y, plotCI = FALSE)
## -----------------------------------------------------------------------------
data(eusilc, package="laeken")
y <- eusilc$eqIncome[eusilc$db040 == "Burgenland"]
w <- eusilc$rb050[eusilc$db040 == "Burgenland"]
fgini(y, w)
## -----------------------------------------------------------------------------
#Comparing the computation time for the various estimation methods and using R
microbenchmark::microbenchmark(
fginindex(y, w, method = 1, useRcpp = FALSE),
fginindex(y, w, method = 2, useRcpp = FALSE),
fginindex(y, w, method = 3, useRcpp = FALSE),
fginindex(y, w, method = 4, useRcpp = FALSE),
fginindex(y, w, method = 5, useRcpp = FALSE)
)
# Comparing the computation time for the various estimation methods and using Rcpp
microbenchmark::microbenchmark(
fginindex(y, w, method = 1),
fginindex(y, w, method = 2),
fginindex(y, w, method = 3),
fginindex(y, w, method = 4),
fginindex(y, w, method = 5)
)
## -----------------------------------------------------------------------------
# Comparing the computation time for estimates of the Gini index in various R packages.
# Comparing 'method = 2', used also by the laeken package.
microbenchmark::microbenchmark(
fgini(y,w),
laeken::gini(y,w)
)
# Comparing 'method = 5', used also by the DescTools and REAT packages.
microbenchmark::microbenchmark(
fgini(y,w, method = 5),
DescTools::Gini(y,w),
REAT::gini(y, weighting = w)
)
## -----------------------------------------------------------------------------
# Gini index estimation and confidence interval using 'pbootstrap'.
fgini(y, w, interval = "pbootstrap")
## -----------------------------------------------------------------------------
# Gini index estimation and confidence interval using 'zjackknife'.
fgini(y, w, interval = "zjackknife")
## -----------------------------------------------------------------------------
# Gini index estimation and confidence interval using:
## a: The method 2 for point estimation.
## b: The method 'zalinearization' for variance estimation.
## c: The Sen-Yates-Grundy type variance estimator.
## d: The Hàjek approximation for the joint inclusion probabilities.
fgini(y, w, interval = "zalinearization")
# Gini index estimation and confidence interval using:
## a: The method 3 for point estimation.
## b: The method 'zblinearization' for variance estimation.
## c: The Sen-Yates-Grundy type variance estimator.
## d: The Hàjek approximation for the joint inclusion probabilities.
fgini(y, w, method = 3, interval = "zblinearization")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.