Nothing
There was a significant improvement in the speed of calculation. Details in the table below for 1000 random permutations of a given size:
| permutation size | 30 | 50 | 100 | 200 | 300 | |---|---|---|---|---|---| | old computation time | 0.09 s | 0.10 s | 0.25 s | ~10 s | ~25 s | | new computation time | 0.07 s | 0.08 s | 0.10 s | 0.17 s | ~0.20 s |
plot.gips()
can get type = "n0"
, which will plot the change of n0
along the "MH" optimization. Handy for deciding of burn-in time;find_MAP(optimizer = "MH")
tracks the n0
along the optimization;summary.gips()
calculates Likelihood-Ratio test.logLik.gips()
will return an object of class logLik
;BIC.gips()
AIC.gips()
logLik.gips()
as.character.gips()
gips()
has a new default D_matrix = mean(diag(S)) * diag(p)
;summary.gips()
calculates AIC
, BIC
, and n_parameters
(number of free parameters in the covariance matrix);get_probabilities_from_gips()
will return a sorted vector;compare_posteriories_of_perms()
and compare_log_posteriories_of_perms()
have a new parameter digits
;gips
object can now be passed and interpreted as a permutation. Those are:perm
in gips()
, project_matrix()
, prepare_orthogonal_matrix()
, get_structure_constants()
, calculate_gamma_function()
;perm1
and perm2
in compare_posteriories_of_perms()
, compare_log_posteriories_of_perms()
;x
in gips_perm()
;plot.gips()
can get type = "MLE"
, which is an alias for type = "heatmap"
;find_MAP(optimizer = "BF")
is 3 times faster;find_MAP(optimizer = "BF")
is default for perm_size <= 9
.post_probabilities
underflows to 0. This is appropriately validated now;NaN
s should not occur in find_MAP()
for D_matrix <- diag(ncol(S)) * d
when 1000 < d < 1e300
;NaN
s do occur in find_MAP()
, they will throw an error (used to show a warning);Inf
better handled in print.gips()
;print.*()
functions will print \n
in the end;print.gips()
;delta
parameter of gips()
has to be bigger than 1
. We used to restrict it to bigger than 2
;project_matrix()
shows a warning when the non-positive-semi-definite matrix is passed as an S
argument;project_matrix()
preserves colnames()
and rownames()
of a matrix;D_matrix
is checked for containing any NaN
or Inf
values;integer
. Now we use double
;compare_log_posteriories_of_perms()
and compare_posteriories_of_perms()
show an error when given two incomparable gips
objects (with different parameters).Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.