dekw | R Documentation |
Computes the probability density function (PDF) for the Exponentiated
Kumaraswamy (EKw) distribution with parameters alpha
(\alpha
),
beta
(\beta
), and lambda
(\lambda
).
This distribution is defined on the interval (0, 1).
dekw(x, alpha, beta, lambda, log_prob = FALSE)
x |
Vector of quantiles (values between 0 and 1). |
alpha |
Shape parameter |
beta |
Shape parameter |
lambda |
Shape parameter |
log_prob |
Logical; if |
The probability density function (PDF) of the Exponentiated Kumaraswamy (EKw) distribution is given by:
f(x; \alpha, \beta, \lambda) = \lambda \alpha \beta x^{\alpha-1} (1 - x^\alpha)^{\beta-1} \bigl[1 - (1 - x^\alpha)^\beta \bigr]^{\lambda - 1}
for 0 < x < 1
.
The EKw distribution is a special case of the five-parameter
Generalized Kumaraswamy (GKw) distribution (dgkw
) obtained
by setting the parameters \gamma = 1
and \delta = 0
.
When \lambda = 1
, the EKw distribution reduces to the standard
Kumaraswamy distribution.
A vector of density values (f(x)
) or log-density values
(\log(f(x))
). The length of the result is determined by the recycling
rule applied to the arguments (x
, alpha
, beta
,
lambda
). Returns 0
(or -Inf
if
log_prob = TRUE
) for x
outside the interval (0, 1), or
NaN
if parameters are invalid (e.g., alpha <= 0
,
beta <= 0
, lambda <= 0
).
Lopes, J. E.
Nadarajah, S., Cordeiro, G. M., & Ortega, E. M. (2012). The exponentiated Kumaraswamy distribution. Journal of the Franklin Institute, 349(3),
Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of Statistical Computation and Simulation,
Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random processes. Journal of Hydrology, 46(1-2), 79-88.
dgkw
(parent distribution density),
pekw
, qekw
, rekw
(other EKw functions),
# Example values
x_vals <- c(0.2, 0.5, 0.8)
alpha_par <- 2.0
beta_par <- 3.0
lambda_par <- 1.5 # Exponent parameter
# Calculate density
densities <- dekw(x_vals, alpha_par, beta_par, lambda_par)
print(densities)
# Calculate log-density
log_densities <- dekw(x_vals, alpha_par, beta_par, lambda_par, log_prob = TRUE)
print(log_densities)
# Check: should match log(densities)
print(log(densities))
# Compare with dgkw setting gamma = 1, delta = 0
densities_gkw <- dgkw(x_vals, alpha_par, beta_par, gamma = 1.0, delta = 0.0,
lambda = lambda_par)
print(paste("Max difference:", max(abs(densities - densities_gkw)))) # Should be near zero
# Plot the density for different lambda values
curve_x <- seq(0.01, 0.99, length.out = 200)
curve_y1 <- dekw(curve_x, alpha = 2, beta = 3, lambda = 0.5) # less peaked
curve_y2 <- dekw(curve_x, alpha = 2, beta = 3, lambda = 1.0) # standard Kw
curve_y3 <- dekw(curve_x, alpha = 2, beta = 3, lambda = 2.0) # more peaked
plot(curve_x, curve_y2, type = "l", main = "EKw Density Examples (alpha=2, beta=3)",
xlab = "x", ylab = "f(x)", col = "red", ylim = range(0, curve_y1, curve_y2, curve_y3))
lines(curve_x, curve_y1, col = "blue")
lines(curve_x, curve_y3, col = "green")
legend("topright", legend = c("lambda=0.5", "lambda=1.0 (Kw)", "lambda=2.0"),
col = c("blue", "red", "green"), lty = 1, bty = "n")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.