glamlasso: Penalization in Large Scale Generalized Linear Array Models
Version 2.0.1

Efficient design matrix free procedure for penalized estimation in large scale 2 and 3-dimensional generalized linear array models. Currently either Lasso or SCAD penalized estimation is possible for the followings models: The Gaussian model with identity link, the Binomial model with logit link, the Poisson model with log link and the Gamma model with log link.

AuthorAdam Lund
Date of publication2016-08-19 17:05:02
MaintainerAdam Lund <adam.lund@math.ku.dk>
LicenseGPL-3
Version2.0.1
Package repositoryView on CRAN
InstallationInstall the latest version of this package by entering the following in R:
install.packages("glamlasso")

Popular man pages

glamlasso: Penalization in Large Scale Generalized Linear Array Models
glamlasso_internal: Internal glamlasso Functions
objective: Compute objective values
predict.glamlasso: Make Prediction From a glamlasso Object
print.glamlasso: Print Function for objects of Class glamlasso
RH: The Rotated H-transform of a 3d Array by a Matrix
See all...

All man pages Function index File listing

Man pages

glamlasso: Penalization in Large Scale Generalized Linear Array Models
glamlasso_internal: Internal glamlasso Functions
objective: Compute objective values
predict.glamlasso: Make Prediction From a glamlasso Object
print.glamlasso: Print Function for objects of Class glamlasso
RH: The Rotated H-transform of a 3d Array by a Matrix

Functions

H Man page Source code
RH Man page Source code
Rotate Man page Source code
gdpg Man page Source code
getobj Man page Source code
glamlasso Man page Source code
glamlasso_RH Man page
glamlasso_internal Man page
glamlasso_objective Man page
mu Man page Source code
objective Man page Source code
predict.glamlasso Man page Source code
print.glamlasso Man page Source code

Files

src
src/rcppfunc.cpp
src/Makevars
src/auxfunc.h
src/RcppExports.cpp
NAMESPACE
R
R/glamlasso.R
R/glamlasso_predict.R
R/glamlasso_internal.R
R/glamlasso_RH.R
R/glamlasso_print.R
R/RcppExports.R
R/glamlasso_objective.R
MD5
DESCRIPTION
man
man/print.glamlasso.Rd
man/predict.glamlasso.Rd
man/RH.Rd
man/objective.Rd
man/glamlasso.Rd
man/glamlasso_internal.Rd
glamlasso documentation built on May 20, 2017, 4:45 a.m.

Questions? Problems? Suggestions? Tweet to @rdrrHQ or email at ian@mutexlabs.com.

Please suggest features or report bugs in the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.