Nothing
#' glmdisc: A package for discretizing continuous features, grouping categorical features' values and optimizing it for logistic regression.
#'
#' The glmdisc package provides two important functions:
#' glmdisc and its associate method discretize.
#'
#' @section \code{\link{glmdisc}} function:
#' The \code{\link{glmdisc}} function discretizes a training set using an SEM-Gibbs based method.
#'
#'
#' @section \code{\link{discretize}} function:
#' The \code{\link{discretize}} function will discretize a new input dataset given a discretization scheme of S4 class \code{\link{glmdisc}}.
#'
#'
#' @section \code{\link{cutpoints}} function:
#' The \code{\link{cutpoints}} function will provide the cutpoints / groupings of a discretization scheme of S4 class \code{\link{glmdisc}} in a list.
#'
#'
#' @section \code{\link{predict}} function:
#' The \code{\link{predict}} function will discretize a raw test set, given a provided discretization scheme of S4 class \code{\link{glmdisc}}, using the \code{\link{discretize}} function and return the predicted probabilities.
#'
#'
#' @section Miscellaneous:
#' We provide as well the classical \code{\link{show}}, \code{\link{print}}, \code{\link{summary}} functions, as well as \code{\link{normalizedGini}} that is used to calculate the Gini index (a classical Credit Scoring goodness-of-fit indicator).
#'
#'
#' @author Adrien Ehrhardt.
#' @docType package
#' @importFrom Rcpp evalCpp
#' @useDynLib glmdisc
#' @name glmdisc-package
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.