View source: R/glmmLassoControl.r
glmmLassoControl | R Documentation |
glmmLasso
fitThe values supplied in the function call replace the defaults and a list with all possible arguments is returned. The returned list is used as the control
argument to the glmmLasso
function.
glmmLassoControl(nue=1,index=NULL,smooth=NULL, start=NULL, q_start=NULL,
center = TRUE, standardize = TRUE, steps=1000,
method="EM", overdispersion=FALSE,
epsilon=1e-4, maxIter=200, print.iter=FALSE,
print.iter.final=FALSE, method.final="EM",
eps.final=1e-4, Q.fac=5, complexity="hat.matrix",...)
nue |
weakness of the learner. Choose 0 < nue =< 1. Default is 1. |
index |
vector which defines the grouping of the variables. Components sharing the same number build a group and factor variables get a single number (and are automatically treated as a group). Non-penalized coefficients are marked with NA. |
smooth |
a list specifying the formula of the smooth terms, together with the number of basis functions |
start |
a vector containing starting values for fixed and random effects of suitable length. Default is a vector full of zeros. |
q_start |
a scalar or matrix of suitable dimension, specifying starting values for the random-effects variance-covariance matrix. Default is a scalar 0.1 or diagonal matrix with 0.1 in the diagonal, depending on the dimension of the random effects. |
center |
logical. If true, the columns of the design matrix will be centered (except a possible intercept column). |
standardize |
logical. If true, the design matrix will be
blockwise orthonormalized such that for each block |
steps |
the number of iterations. Default is 1000. |
method |
two methods for the computation of the random-effects variance-covariance parameter estimates can be chosen, an EM-type estimate and an REML-type estimate. The REML-type estimate uses the |
overdispersion |
logical scalar. If |
epsilon |
controls the speed of convergence. Default is 1e-4. |
maxIter |
the number of iterations for the final Fisher scoring re-estimation procedure. Default is 200. |
print.iter |
logical. Should the number of iterations be printed? Default is FALSE. |
print.iter.final |
logical. Should the number of iterations in the final re-estimation step be printed? Default is FALSE. |
method.final |
two methods for the computation of the random-effects variance-covariance parameter estimates
for the final Fisher scoring re-estimation procedure can be chosen, an EM-type estimate and an REML-type estimate. The REML-type estimate uses the |
eps.final |
controls the speed of convergence in the final re-estimation. Default is 1e-4. |
Q.fac |
Factor which controls the interval on which is searched for the optimal parameters of the random-effects variance-covariance matrix, if method.final="REML". Default is 5. |
complexity |
Character which determines how the model complexity is computed. Default is "hat.matrix", which sums up the trace of the corresponding hat matrix. Alternatively, simply the number of estimated (non-zero) parameters can be used by setting complexity="non-zero". |
... |
Futher arguments to be passed. |
a list with components for each of the possible arguments.
Andreas Groll groll@statistik.tu-dortmund.de
glmmLasso
, bobyqa
# Use REML estimates for random effects covariance parameters
# and lighten the convergence criterion
glmmLassoControl(method="REML", epsilon=1e-4)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.