Nothing
################################################################################
##### summary.cv.glmnetr_yymmdd.R ##############################################
################################################################################
#' Output summary for elastic net models fit within a nested.glmnetr() output object.
#'
#' @description
#' Summarize the cross-validation informed model fit. The fully penalized
#' (gamma=1) beta estimate will not be given by default but can too be output
#' using printg1=TRUE.
#'
#' @param object a nested.glmnetr() output object.
#' @param printg1 TRUE to also print out the fully penalized lasso beta, else FALSE to suppress.
#' @param orderall By default (orderall=FALSE) the order terms enter into the lasso model
#' is given for the number of terms that enter in lasso minimizing loss model. If
#' orderall=TRUE then all terms that are included in any lasso fit are described.
#' @param type once of c("lasso", "elastic", "ridge") to select for summarizing,
#' with default of "lasso".
#' @param ... Additional arguments passed to the summary function.
#'
#' @return Coefficient estimates (beta)
#'
#' @seealso
#' \code{\link{predict.cv.glmnetr}} , \code{\link{nested.glmnetr}}
#'
#' @export
#'
summary.cv.glmnetr = function(object, printg1="FALSE", orderall=FALSE, type="lasso", ...) {
if ( substr(object$version[2],1,21) == "glmnetr version 0.6-1" ) {
summary.cv.glmnetr_0_6_1(object, printg1=printg1, orderall=orderall, type=type, ...)
} else {
summary.cv.glmnetr_0_5_5(object, printg1=printg1, orderall=orderall, ...)
}
}
###############################################################################################################
###############################################################################################################
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.