library(ggplot2); theme_set(theme_bw()) require(glmpca)
Simulate some data. Thanks to Jake Yeung for providing the original inspiration for the simulation. We create three biological groups (clusters) of 50 cells each. There are 5,000 total genes and of these we set 10% to be differentially expressed across clusters. We also create two batches, one with a high total count and the other with a low total count. Each batch has an equal number of cells from the three biological clusters. A successful dimension reduction will recover the three true clusters and avoid separating cells by batch.
set.seed(202) ngenes <- 5000 #must be divisible by 10 ngenes_informative<-ngenes*.1 ncells <- 50 #number of cells per cluster, must be divisible by 2 nclust<- 3 # simulate two batches with different depths batch<-rep(1:2, each = nclust*ncells/2) ncounts <- rpois(ncells*nclust, lambda = 1000*batch) # generate profiles for 3 clusters profiles_informative <- replicate(nclust, exp(rnorm(ngenes_informative))) profiles_const<-matrix(ncol=nclust,rep(exp(rnorm(ngenes-ngenes_informative)),nclust)) profiles <- rbind(profiles_informative,profiles_const) # generate cluster labels clust <- sample(rep(1:3, each = ncells)) # generate single-cell transcriptomes counts <- sapply(seq_along(clust), function(i){ rmultinom(1, ncounts[i], prob = profiles[,clust[i]]) }) rownames(counts) <- paste("gene", seq(nrow(counts)), sep = "_") colnames(counts) <- paste("cell", seq(ncol(counts)), sep = "_") # clean up rows Y <- counts[rowSums(counts) > 0, ] sz<-colSums(Y) Ycpm<-1e6*t(t(Y)/sz) Yl2<-log2(1+Ycpm) z<-log10(sz) pz<-1-colMeans(Y>0) cm<-data.frame(total_counts=sz,zero_frac=pz,clust=factor(clust),batch=factor(batch))
set.seed(202) system.time(res1<-glmpca(Y,2,fam="poi")) #about 9 seconds print(res1) pd1<-cbind(cm,res1$factors,dimreduce="glmpca-poi") #check optimizer decreased deviance plot(res1$dev,type="l",xlab="iterations",ylab="Poisson deviance")
set.seed(202) system.time(res2<-glmpca(Y,2,fam="nb")) #about 32 seconds print(res2) pd2<-cbind(cm,res2$factors,dimreduce="glmpca-nb") #check optimizer decreased deviance plot(res2$dev,type="l",xlab="iterations",ylab="negative binomial deviance")
#standard PCA system.time(res3<-prcomp(log2(1+t(Ycpm)),center=TRUE,scale.=TRUE,rank.=2)) #<1 sec pca_factors<-res3$x colnames(pca_factors)<-paste0("dim",1:2) pd3<-cbind(cm,pca_factors,dimreduce="pca-logcpm")
pd<-rbind(pd1,pd2,pd3) #visualize results ggplot(pd,aes(x=dim1,y=dim2,colour=clust,shape=batch))+geom_point(size=4)+facet_wrap(~dimreduce,scales="free",nrow=3)
GLM-PCA identifies the three biological clusters and removes the batch effect. The result is the same whether we use the Poisson or negative binomial likelihood (although the latter is slightly slower). Standard PCA identifies the batch effect as the primary source of variation in the data, even after normalization. Application of a clustering algorithm to the PCA dimension reduction would identify incorrect clusters.
The glmpca function returns an S3 object (really just a list) with several components. We will examine more closely the result of the negative binomial GLM-PCA.
nbres<-res2 names(nbres) dim(Y) dim(nbres$factors) dim(nbres$loadings) dim(nbres$coefX) hist(nbres$coefX[,1],breaks=100,main="feature-specific intercepts") print(nbres$glmpca_family)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.