Description Usage Format Details References Examples
"env.two" is an R environment containing a data list generated from 50 subjects, and the parameter settings used to generate the data.
1 | data("env.two")
|
An R environment.
data2a list of length 50, each contains a data frame with 3 variables.
error2a list of length 50, each contains a data frame with 2 columns.
thetaa 3 by 1 vector, which is the population level coefficients (A,B,C) of the model.
Sigmaa 2 by 2 matrix, which is the covariance matrix of the two Gaussian white noise processes.
pthe order of the vector autoregressive (VAR) model.
Wa 2p by 2 matrix, which is the transition matrix of the VAR(p) model.
Deltaa 2 by 2 matrix, which is the covariance matrix of the initial condition of the Gaussian white noise processes.
na 50 by 1 matrix, is the number of time points for each subject.
Lambdathe covariance matrix of the model errors in the coefficient regression model.
Aa vector of length 50, is the A value in the single-level for each subject.
Ba vector of length 50, is the B value in the single-level for each subject.
Ca vector of length 50, is the C value in the single-level for each subject.
The true parameters are set as follows. The number of subjects i N = 50. For each subject, the number of time points is a random draw from a Poisson distribution with mean 100. The population level coefficients are set to be A = 0.5, C = 0.5 and B = -1, and the variances of the Gaussian white noise process are assumed to be the same across participants with σ_{1_{i}}^2 = 1, σ_{2_{i}}^2 = 4 and the correlation is δ = 0.5. For the VAR model, we consider the case p = 1, and the parameter settings satisfy the stationarity condition.
Zhao, Y., & Luo, X. (2017). Granger Mediation Analysis of Multiple Time Series with an Application to fMRI. arXiv preprint arXiv:1709.05328.
1 2 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.