Description Usage Arguments Value Note Author(s) References Examples
Performs generalized non-negative matrix factorization based on Renyi Divergence
1 2 3 |
V |
Input data matrix |
scheme |
KL, Renyi, or ED |
nsteps |
Update steps, default 2000 |
repeats |
Repeats, default 20 |
ranks |
The number of components into which matrix |
cltarget |
Clustering target, default 'PATTERN' ( |
clscheme |
Clustering scheme, default 'Binary', could be 'PearsonHC' |
reffile |
Default none |
scaling |
Boolean, default F |
normalizing |
Boolean, H matrix normalization, default 'F' |
alphas |
Renyi parameter, default 1.0 (a scalar), ignored if |
runtype |
simulation (default) or evaluation or whole |
cstepsize |
Convergence test step size, default 20 |
idealization |
Default 1 |
H |
List of pattern matrices, one for each repetition |
W |
List of amplitude matrices, one for each repetition |
Further notes...
Jose M. Maisog, Guoli Wang, Karthik Devarajan
Devarajan K. Nonnegative matrix factorization: an analytical and interpretive tool in computational biology. PLoS Comput Biol. 2008 Jul 25;4(7):e1000029.
Devarajan, K., Wang, G., Ebrahimi, N. (2011). A unified approach to nonnegative matrix factorization and probabilistic latent semantic indexing, (July 2011). Cobra Preprint Series. Working Paper 80. http://biostats.bepress.com/COBRA/Art80.
http://devarajan.fccc.edu
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.