SICM: Simulated integrated conditional moment test statistic

SICMR Documentation

Simulated integrated conditional moment test statistic

Description

This class inherits from TestStatistic and implements a function to calculate the test statistic (and x-y-values that can be used to plot the underlying process).

The process underlying the test statistic is given in Bierens & Wang (2012) \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1017/S0266466611000168")} and defined by

\hat{T}_n^{(s)}(c) = \frac{1}{(2c)^{p+1}} \int_{[-c,c]^p} \int_{-c}^c \left|\frac{1}{\sqrt{n}} \sum_{j=1}^n \Big(\exp(i \tau Y_j) - \exp(i \tau \tilde{Y}_j)\Big) \exp(i \xi^T X_j)\right|^2 d\tau d\xi

Super class

gofreg::TestStatistic -> SICM

Methods

Public methods

Inherited methods

Method new()

Initialize an instance of class SICM.

Usage
SICM$new(
  c,
  transx = function(values) {
     tvals <- atan(scale(values))
     tvals[,
    apply(values, 2, sd) == 0] <- 0
     return(tvals)
 },
  transy = function(values, data) {
     array(atan(scale(values, center = mean(data$y),
    scale = sd(data$y))))
 }
)
Arguments
c

chosen value for integral boundaries (see Bierens & Wang (2012))

transx

⁠function(values)⁠ used to transform x-values to be standardized and bounded; default is standardization by subtracting the mean and dividing by the standard deviation and then applying arctan

transy

⁠function(values, data)⁠ used to transform y-values to be standardized and bounded (same method is used for simulated y-values); default is standardization by subtracting the mean and dividing by the standard deviation and then applying arctan

Returns

a new instance of the class


Method calc_stat()

Calculate the value of the test statistic for given data and a model to test for.

Usage
SICM$calc_stat(data, model)
Arguments
data

data.frame() with columns x and y containing the data

model

ParamRegrModel to test for

Returns

The modified object (self), allowing for method chaining.


Method clone()

The objects of this class are cloneable with this method.

Usage
SICM$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Examples

# Create an example dataset
n <- 100
x <- cbind(runif(n), rbinom(n, 1, 0.5))
model <- NormalGLM$new()
y <- model$sample_yx(x, params=list(beta=c(2,3), sd=1))
data <- dplyr::tibble(x = x, y = y)

# Fit the correct model
model$fit(data, params_init=list(beta=c(1,1), sd=3), inplace = TRUE)

# Print value of test statistic and plot corresponding process
ts <- SICM$new(c = 5)
ts$calc_stat(data, model)
print(ts)
plot(ts)

# Fit a wrong model
model2 <- NormalGLM$new(linkinv = function(u) {u+10})
model2$fit(data, params_init=list(beta=c(1,1), sd=3), inplace = TRUE)

# Print value of test statistic and plot corresponding process
ts2 <- SICM$new(c = 5)
ts2$calc_stat(data, model2)
print(ts2)
plot(ts2)

gofreg documentation built on Oct. 4, 2024, 5:10 p.m.