Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
eval = FALSE
)
## ----setup--------------------------------------------------------------------
# library(gooseR)
## -----------------------------------------------------------------------------
# # Install from GitHub (CRAN submission pending)
# # install.packages("remotes")
# remotes::install_github("blockbtheriault/gooseR")
## -----------------------------------------------------------------------------
# library(gooseR)
#
# # Test the connection
# if (goose_test_cli()) {
# message("✅ Goose CLI is ready!")
# } else {
# message("❌ Need to configure goose - see next section")
# }
## -----------------------------------------------------------------------------
# # For OpenAI users
# goose_configure(
# provider = "openai",
# model = "gpt-4o",
# api_key = "your-api-key-here"
# )
#
# # For Anthropic Claude users
# goose_configure(
# provider = "anthropic",
# model = "claude-3-opus",
# api_key = "your-api-key-here"
# )
## -----------------------------------------------------------------------------
# # Ask about your data
# goose_ask("What are the key characteristics of the mtcars dataset?")
#
# # Get analysis suggestions
# goose_ask("What statistical tests would be appropriate for comparing mpg across different numbers of cylinders?")
#
# # Request code examples
# response <- goose_ask("Show me how to create a correlation matrix heatmap in R")
# cat(response)
## -----------------------------------------------------------------------------
# # Write some code
# my_analysis <- function(data) {
# # Calculate mean without checking for NA
# avg <- mean(data$value)
#
# # Using a loop instead of vectorized operation
# results <- c()
# for(i in 1:nrow(data)) {
# results[i] <- data$value[i] * 2
# }
#
# return(list(avg = avg, doubled = results))
# }
#
# # Get a gentle review
# goose_honk(severity = "gentle")
#
# # Get more critical feedback
# goose_honk(severity = "moderate")
#
# # For tough love
# goose_honk(severity = "harsh")
## -----------------------------------------------------------------------------
# # Create a model
# model <- lm(mpg ~ wt + cyl + hp, data = mtcars)
#
# # Save it with tags for easy retrieval
# goose_save(
# model,
# category = "models",
# tags = c("mtcars", "regression", "fuel_efficiency")
# )
#
# # List saved objects
# goose_list(category = "models")
#
# # Load it back (even in a new session)
# my_model <- goose_load("model")
# summary(my_model)
## -----------------------------------------------------------------------------
# library(ggplot2)
#
# # Create a plot with Block branding
# p <- ggplot(mtcars, aes(x = wt, y = mpg)) +
# geom_point(size = 3, alpha = 0.7) +
# geom_smooth(method = "lm", se = TRUE) +
# theme_brand("block") + # Apply Block theme
# labs(
# title = "Fuel Efficiency vs Weight",
# subtitle = "Linear relationship in mtcars dataset",
# x = "Weight (1000 lbs)",
# y = "Miles per Gallon"
# )
#
# print(p)
#
# # Access brand colors
# colors <- brand_palette("block", "categorical")
## -----------------------------------------------------------------------------
# # Load your data
# my_data <- read.csv("my_dataset.csv")
#
# # Share a sample with goose for context
# goose_give_sample(my_data)
#
# # Get an analysis plan
# plan <- goose_make_a_plan("exploratory")
# cat(plan)
#
# # Do your analysis...
# # ...
#
# # Get feedback on your approach
# goose_honk(severity = "moderate")
#
# # Save your work for tomorrow
# goose_continuation_prompt()
## -----------------------------------------------------------------------------
# # Load survey data with long question names
# survey <- read.csv("qualtrics_export.csv")
#
# # Automatically rename columns intelligently
# clean_survey <- goose_rename_columns(survey)
#
# # View the mapping
# goose_view_column_map(clean_survey)
# # "How satisfied are you with our customer service?" → "sat_cust_serv"
# # "On a scale of 1-10, how likely are you to recommend..." → "nps"
## -----------------------------------------------------------------------------
# # Before starting work, backup existing objects
# goose_backup()
#
# # Work in a temporary session that auto-cleans
# with_goose_session({
# # Experimental work here
# test_model <- lm(mpg ~ ., data = mtcars)
# goose_save(test_model, category = "temp", tags = "experiment")
#
# # This will be auto-cleaned when session ends
# }, cleanup = TRUE)
#
# # Create a handoff document for your colleague
# goose_handoff()
#
# # Clean up test objects
# goose_clear_tags(c("test", "temp", "draft"))
## -----------------------------------------------------------------------------
# # Get help on any function
# ?goose_ask
# ?goose_honk
# ?goose_save
#
# # Ask goose for help!
# goose_ask("How do I use goose_rename_columns with custom abbreviations?")
#
# # Check your gooseR version
# packageVersion("gooseR")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.