Description Usage Arguments Details Value See Also Examples
A function to predict testing data with built gradient descent model
1 | prediction(model, dataTestInput)
|
model |
a matrix of coefficients used as a linear model to predict testing data input. This parameter exclusively produced by the gradient-descent-based learning function. |
dataTestInput |
a data.frame represented dataset with input variables only (m \times n-1), where m is the number of instances and n is the number of input variables only. |
This function used to predict testing data with only input variable named
dataTestInput
. The model
parameter is the coefficients
that produced by gradient-descent-based learning function. The result of
this function is a dataset that contains dataTestInput
combined
with prediction data as the last column of dataset.
a data.frame of testing data input variables and prediction variables.
GD
, MBGD
, SGD
, SAGD
,
MGD
, AGD
, ADAGRAD
, ADADELTA
,
RMSPROP
, ADAM
, SSGD
, SVRG
,
SARAH
, SARAHPlus
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | ##################################
## Predict Testing Data Using GD Model
## load R Package data
data(gradDescentRData)
## get z-factor Data
dataSet <- gradDescentRData$CompressilbilityFactor
## do variance scaling to dataset
featureScalingResult <- varianceScaling(dataSet)
## split dataset
splitedDataSet <- splitData(featureScalingResult$scaledDataSet)
## built model using GD
model <- GD(splitedDataSet$dataTrain)
## separate testing data with input only
dataTestInput <- (splitedDataSet$dataTest)[,1:ncol(splitedDataSet$dataTest)-1]
## predict testing data using GD model
prediction <- prediction(model,dataTestInput)
## show result()
prediction
##################################
## Predict Testing Data Using SARAHPlus Model
## load R Package data
data(gradDescentRData)
## get z-factor Data
dataSet <- gradDescentRData$CompressilbilityFactor
## do variance scaling to dataset
featureScalingResult <- varianceScaling(dataSet)
## split dataset
splitedDataSet <- splitData(featureScalingResult$scaledDataSet)
## built model using SARAHPlus
model <- SARAHPlus(splitedDataSet$dataTrain, alpha=0.1, maxIter=10,
innerIter=10, gammaS=0.125, seed=NULL)
## separate testing data with input only
dataTestInput <- (splitedDataSet$dataTest)[,1:ncol(splitedDataSet$dataTest)-1]
## predict testing data using GD model
prediction <- prediction(model,dataTestInput)
## show result()
prediction
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.