Description Usage Arguments Details Value Author(s) References See Also Examples
Inference on the unconditional Granger-causality spectrum is provided by the parametric test of Breitung and Candelon (2006).
1 2 | bc_test_uncond(x, y, ic.chosen = "SC", max.lag = min(4, length(x) - 1),
plot = F, type.chosen = "none", p = 0, conf = 0.95)
|
x |
univariate time series. |
y |
univariate time series (of the same length of |
ic.chosen |
estimation method parameter |
max.lag |
maximum number of lags |
plot |
logical; if TRUE, it returns the plot of conditional Granger-causality spectrum. Defaults to FALSE. |
type.chosen |
parameter |
p |
parameter |
conf |
prescribed confidence level. It defaults to 0.95. |
bc_test_uncond
calculates the test of Breitung and Candelon (2006) on the unconditional Granger-causality
of a time series x
(effect variable) respect to a time series y
(cause variable).
It requireNamespaces package vars.
frequency
: frequencies used by Fast Fourier Transform.
n
: time series length.
confidence_level
: prescribed confidence level.
significant_frequencies
: frequencies at which the test is significant..
F-test
: computed F-test at each frequency.
F-threshold
: F-threshold at each frequency under prescribed confidence level.
roots
: roots of the estimated VAR model.
delays
: delays of the estimated VAR model.
The result is returned invisibly if plot is TRUE.
Matteo Farne', Angela Montanari, matteo.farne2@unibo.it
Breitung, J., Candelon, B., 2006. Testing for short- and long-run causality: A frequency-domain approach. Journal of Econometrics. 132, 2, 363–378.
Farne', M., Montanari, A., 2018. A bootstrap test to detect prominent Granger-causalities across frequencies. <arXiv:1803.00374>, Submitted.
VAR
.
1 2 3 | RealGdp.rate.ts<-euro_area_indicators[,1]
m3.rate.ts<-euro_area_indicators[,2]
uncond_bc<-bc_test_uncond(RealGdp.rate.ts,m3.rate.ts,ic.chosen="SC",max.lag=2)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.