Estimation - Note 2"

knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)
library(gremes)


For application of this estimator, see Vignette "Code - Note 2".


\begin{equation} {\mu_{W_u,u}(\theta)}v = -\frac{1}{2}\sum{e \in p(u,v)} \theta_{e}^2, \quad v\in W_u \setminus u \end{equation}

\begin{equation} \big(\Lambda(\theta)\big){ij} = \lambda^2{ij}(\theta) = \frac{1}{4}\sum_{e \in p(i,j)} \theta_e^2\, , \qquad i,j\in V, \ i \ne j, e\in E. \end{equation}

\begin{equation} \label{eq:hrdist} \big(\Sigma_{W_u,u}(\Lambda)\big){ij} = 2(\lambda{iu}^2 + \lambda_{ju}^2 - \lambda^2_{ij}), \qquad i,j\in W_u\setminus u. \end{equation}

Maximum likelihood method - Version 1

The estimator of $(\theta_e, e\in E)$ is obtained in a two-step procedure:

Maximum likelihood method - Version 2

Consider the likelihood function of a random sample $y_{i}, i=1, \ldots, k$ of multivariate normal distribution with mean vector $\mu$ and covariance matrix $\Sigma$, where $y_i$ is of dimension $d$.

\begin{align} L(\mu,\Sigma;\, &y_1,\ldots,y_k) = \prod_{i=1}^k\phi_d(y_i-\mu;\Sigma) \&= (2\pi)^{-kd/2}(\det \Sigma^{-1})^{k/2} %\& %\times \exp\Big( -\frac{1}{2}\sum_{i=1}^k(y_i-\mu)^T\Sigma^{-1}(y_i-\mu) \Big)\, . \end{align}

The method of composite likelihoods consists of optimizing a function that collects the likelihood functions across all the sets $W_u, u\in U$. So let for all $u\in U$ the subsets $W_u$ be given.

Consider the composite likelihood function \begin{equation} \begin{split} L\big(\theta; \, & {\Delta_{uv,i}: v\in W_u\setminus u,\, i\in I_u, u\in U}\big) \&= \prod_{u\in U}L\big(\theta_{W_u}; {\Delta_{uv,i}: v\in W_u\setminus u, i\in I_u}\big) \&= \prod_{u\in U}\prod_{i\in I_u} \phi\Big({\Delta_{uv,i}: v\in W_u\setminus u, i\in I_u} - \mu_{W_u, u}(\theta); \Sigma_{W_u, u}(\theta) \Big)\, . \end{split} \end{equation}

The estimator is given by

\begin{equation} \hat{\theta}^{MLE2}{k,n} = \arg\max{\theta\in(0,\infty)^{|E|}} L\big(\theta; {\Delta_{uv,i}: v\in W_u\setminus u, i\in I_u, u\in U}\big) \end{equation}

The assumption under this definition is that for any $u,v \in U$ we have $\Delta_{W_u\setminus u}\perp \Delta_{W_v\setminus v}$, which is clearly not true for overlapping vertex sets $W_u$ and $W_v$. However this simplifies the joint likelihood function and simulation results show that the estimator has comparable qualities to the moment estimator or the one based on extremal coefficients.

References



Try the gremes package in your browser

Any scripts or data that you put into this service are public.

gremes documentation built on Feb. 16, 2023, 8:06 p.m.