Estimation - Note 5"

knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)
library(gremes)

The estimator is the same as the MME for trees described in Vignette "Estimation - Note 1".


For application of this estimator, see Vignette "Code - Note 5".


The idea is to find the edge weights $\delta=(\delta^2_e, e\in E)$ which minimizes the distance between the empirical and the theoretical covariance matrices: \begin{equation} \hat{\delta}^{\mathrm{MM}}{n,k} = \arg\min{\delta\in(0,\infty)^{E}} \sum_{u\in U} \| \hat{\Sigma}{W_u, u}-\Sigma{W_u,u}(\delta) \|_F^2\, . \end{equation}

where

\begin{equation} \hat{X}{v,i} = \frac{1}{1-\hat{F}{v,n}(\xi_{v,i})}, \qquad v \in U, \quad i = 1, \ldots, n. \end{equation}

\begin{equation} \hat{\Sigma}{W_u,u} = \frac{1}{|I_u|}\sum{i\in I_u}(\Delta_{uv,i}-\hat{\mu}{W_u,u}, v\in W_u\setminus u) (\Delta{uv,i}-\hat{\mu}_{W_u,u}, v\in W_u\setminus u)^\top\, . %\end{split} \end{equation}

The non-parametric estimators $\hat{\mu}$ and $\hat{\Sigma}$ has been suggested in @engelke.

References



Try the gremes package in your browser

Any scripts or data that you put into this service are public.

gremes documentation built on Feb. 16, 2023, 8:06 p.m.