Estimation - Note 6"

knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)
library(gremes)

This estimator differs from the others because the conditioning event does not depend on a particular node $u$ but it depends on the event that the geometric mean exceeds a high threshold.


For application of this estimator, see Vignette "Code - Note 6".


In an unpublished note of Johan Segers (@segers2019mean) it is shown that if $X= (X_1, \ldots, X_d)$ with unit Pareto margins and in the domain of attraction of a Huesler-Reiss distribution with parameter matrix $\Lambda=(\lambda^2){ij}$, then it holds
\begin{equation} \mathcal{L}\Big((Y_v-\bar{Y})
{v=1}^d|\bar{Y}>y\Big) \rightarrow \mathcal{N}_d(\bar{\mu}, \bar{\Sigma}), \end{equation} with $Y=(Y_1,\ldots, Y_d)=(\ln X_1,\ldots, \ln X_d )$ and $$\bar{\Sigma} =-M_d\Lambda M_d,\qquad \bar{\mu}=-(1/d)\Lambda 1_d + (1/d)1_d^T \Lambda 1_d 1_d$$ where $M_d=I_d-(1/d)1_d1_d^T$, $I_d$ is an identity matrix of size $d$ and $1_d$ is a a vector of ones of length $d$.

Consider a tree $T=(V,E)$ and edge weights $\theta=(\theta_e, e\in E)$. Under the assumption that $X=(X_v, v\in V)$ is in the domain of attraction of a Huesler-Reiss copula with unit Frechet margins and structured parameter matrix $\Lambda(\theta)$ \begin{equation} \big(\Lambda(\theta)\big){ij} = \lambda^2{ij}(\theta) = \frac{1}{4}\sum_{e \in p(i,j)} \theta_e^2\, , \qquad i,j\in V, \ i \ne j, e\in E. \end{equation} we can employ the method of moments or the composite likelihood method to estimate $\theta=(\theta_e, e\in E)$ from $\bar{\Sigma}(\theta)$.

The method of moments estimator

The method of moments estimator is given by

[ \hat{\theta}^{\mathrm{MMave}}{k,n}=\arg\min{\theta\in (0,\infty)^{|E|}} \|\hat{\Sigma}-\bar{\Sigma}(\theta)\|^2_F ]

\begin{equation} \hat{\Sigma} = \frac{1}{|I|}\sum_{i\in I}(\Delta_{v,i}-\hat{\mu}, v\in U) (\Delta_{v,i}-\hat{\mu}, v\in U)^\top\, . %\end{split} \end{equation}

A non-parametric estimator of this type $\hat{\mu}$ and $\hat{\Sigma}$ has been suggested in @engelke.

The composite likelihood estimator

The composite likelihood estimator is given by [ \hat{\theta}^{\mathrm{MLEave}}{k,n}=\arg\max{\theta\in(0,\infty)^{|E|}} L\Big(\bar{\mu}(\theta), \bar{\Sigma}(\theta); {\Delta_{v,i}, i\in I, v\in U}\Big). ] The likelihood function $L$ above is the one of $|U|$-variate Gaussian probability density function with mean $\bar{\mu}$ and covariance matrix $\bar{\Sigma}$.

References



Try the gremes package in your browser

Any scripts or data that you put into this service are public.

gremes documentation built on Feb. 16, 2023, 8:06 p.m.