View source: R/visualize.penalty.R
visualize.penalty | R Documentation |
Makes a plot or returns a data frame containing the group elastic net penalty (or its derivative) evaluated at a sequence of input values.
visualize.penalty(x = seq(-5, 5, length.out = 1001),
penalty = c("LASSO", "MCP", "SCAD"),
alpha = 1,
lambda = 1,
gamma = 4,
derivative = FALSE,
plot = TRUE,
subtitle = TRUE,
legend = TRUE,
location = ifelse(derivative, "bottom", "top"),
...)
x |
sequence of values at which to evaluate the penalty. |
penalty |
which penalty or penalties should be plotted? |
alpha |
elastic net tuning parameter (between 0 and 1). |
lambda |
overall tuning parameter (non-negative). |
gamma |
additional hyperparameter for MCP (>1) or SCAD (>2). |
derivative |
if |
plot |
if |
subtitle |
if |
legend |
if |
location |
the legend's location; ignored if |
... |
addition arguments passed to |
The group elastic net penalty is defined as
P_{\alpha, \lambda}(\boldsymbol\beta) = Q_{\lambda_1}(\|\boldsymbol\beta\|) + \frac{\lambda_2}{2} \|\boldsymbol\beta\|^2
where Q_\lambda()
denotes the L1 penalty (LASSO, MCP, or SCAD), \| \boldsymbol\beta \| = (\boldsymbol\beta^\top \boldsymbol\beta)^{1/2}
denotes the Euclidean norm, \lambda_1 = \lambda \alpha
is the L1 tuning parameter, and \lambda_2 = \lambda (1-\alpha)
is the L2 tuning parameter. Note that \lambda
and \alpha
denote the lambda
and alpha
arguments.
If plot = TRUE
, then produces a plot.
If plot = FALSE
, then returns a data frame.
Nathaniel E. Helwig <helwig@umn.edu>
Fan J, & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96(456), 1348-1360. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1198/016214501753382273")}
Helwig, N. E. (2024). Versatile descent algorithms for group regularization and variable selection in generalized linear models. Journal of Computational and Graphical Statistics. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/10618600.2024.2362232")}
Tibshirani, R. (1996). Regression and shrinkage via the Lasso. Journal of the Royal Statistical Society, Series B, 58, 267-288. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1111/j.2517-6161.1996.tb02080.x")}
Zhang CH (2010). Nearly unbiased variable selection under minimax concave penalty. The Annals of Statistics, 38(2), 894-942. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1214/09-AOS729")}
visualize.shrink
for plotting shrinkage operator
# plot penalty functions
visualize.penalty()
# plot penalty derivatives
visualize.penalty(derivative = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.