ishi_homma_fun: Ishigami-Homma function evaluation

View source: R/test_functions.R

ishi_homma_funR Documentation

Ishigami-Homma function evaluation

Description

Evaluates the Ishigami-Homma function. Input samples are drawn from a uniform distribution over [-\pi, \pi]^3

Usage

ishi_homma_fun(N, A = 2, B = 1)

Arguments

N

Number of input samples to generate.

A

(default: 2) Numeric, amplitude of the second sine component .

B

(default: 1) Numeric, coefficient of the interaction term.

Details

The Ishigami-Homma function is defined as:

Y = \sin(X_1) + A \cdot \sin^2(X_2) + B \cdot X_3^4 \cdot \sin(X_1)

where X_i \sim \mathcal{U}(-\pi, \pi).

Value

A list with two elements:

  • x: a numeric matrix of size N x 8 containing the input samples.

  • y: a numeric vector of length N with the corresponding function outputs.

See Also

sobol_fun, gaussian_fun

Examples

result <- ishi_homma_fun(1000)
head(result$x)
head(result$y)


gsaot documentation built on Aug. 8, 2025, 7:52 p.m.