inst/doc/introduction.R

## ----setup, include = FALSE----------------------------------------------
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)

options("gu.API.key" = "test")

## ----logan-example, eval=FALSE-------------------------------------------
#  library(guardianapi)
#  library(dplyr)
#  library(lubridate)
#  library(ggplot2)
#  
#  logan_search <- gu_items(query = "profile/brianlogan")
#  
#  logan_search$star_rating <- as.numeric(logan_search$star_rating)
#  
#  logan_reviews <- logan_search %>%
#    filter(!is.na(star_rating),
#           web_publication_date >= as.Date("2002-01-01"),
#           web_publication_date <= as.Date("2018-12-31"))
#  
#  logan_reviews$year <- as.factor(year(logan_reviews$web_publication_date))
#  
#  logan_summary <- logan_reviews %>%
#    group_by(year, star_rating) %>%
#    summarise(count = n()) %>%
#    mutate(perc = count/sum(count)) %>%
#    ungroup() %>%
#    mutate(star_rating = factor(star_rating, levels = c(5,4,3,2,1)))
#  
#  p_logan <- ggplot(data = logan_summary,
#                    aes(x = year, y = count, group = star_rating)) +
#    geom_line(aes(colour = star_rating), size = 1, alpha = 0.9) +
#    scale_colour_viridis_d(name = "Rating") +
#    labs(x="Year", y="Number of Review with Rating") +
#    theme(axis.text.x = element_text(angle = 45, vjust=0.5))
#  
#  p_logan
#  

## ----logan-example-plot, echo=FALSE, out.width = '100%'------------------
knitr::include_graphics("logan-plot.png")

## ----logan-area, eval=FALSE----------------------------------------------
#  p_logan_area <- ggplot(data = logan_summary,
#                    aes(x = year, y = perc, group = star_rating)) +
#    geom_area(aes(fill = star_rating)) +
#    scale_y_continuous(labels = scales::percent) +
#    scale_fill_viridis_d(name = "Rating") +
#    labs(x="Year", y="Number of Review with Rating") +
#    theme(axis.text.x = element_text(angle = 45, vjust=0.5))
#  
#  
#  p_logan_area

## ----logan-area-plot, echo=FALSE, out.width = '100%'---------------------
knitr::include_graphics("logan-area.png")

## ----bradshaw-example, eval=FALSE----------------------------------------
#  library(dplyr)
#  library(lubridate)
#  library(ggplot2)
#  
#  bradshaw_search <- gu_items(query = "profile/peterbradshaw")
#  
#  bradshaw_search$star_rating <- as.numeric(bradshaw_search$star_rating)
#  
#  bradshaw_reviews <- bradshaw_search %>%
#    filter(!is.na(star_rating), star_rating != 0,
#           web_publication_date >= as.Date("2002-01-01"),
#           web_publication_date <= as.Date("2018-12-31"))
#  
#  bradshaw_reviews$year <- as.factor(year(bradshaw_reviews$web_publication_date))
#  
#  bradshaw_summary <- bradshaw_reviews %>%
#    group_by(year, star_rating) %>%
#    summarise(count = n()) %>%
#    mutate(perc = count/sum(count)) %>%
#    ungroup() %>%
#    mutate(star_rating = factor(star_rating, levels = c(5,4,3,2,1)))
#  
#  p_bradshaw <- ggplot(data = bradshaw_summary,
#                    aes(x = year, y = count, group = star_rating)) +
#    geom_line(aes(colour = star_rating), size = 1, alpha = 0.9) +
#    scale_colour_viridis_d(name = "Rating") +
#    labs(x="Year", y="Number of Review with Rating") +
#    theme(axis.text.x = element_text(angle = 45, vjust=0.5))
#  
#  p_bradshaw
#  

## ----bradshaw-example-plot, echo=FALSE, out.width = '100%'---------------
knitr::include_graphics("bradshaw-plot.png")

## ----bradshaw-area, eval=FALSE-------------------------------------------
#  p_bradshaw_area <- ggplot(data = bradshaw_summary,
#                    aes(x = year, y = perc, group = star_rating)) +
#    geom_area(aes(fill = star_rating)) +
#    scale_y_continuous(labels = scales::percent) +
#    scale_fill_viridis_d(name = "Rating") +
#    labs(x="Year", y="Number of Review with Rating") +
#    theme(axis.text.x = element_text(angle = 45, vjust=0.5))
#  
#  p_bradshaw_area

## ----bradshaw-area-plot, echo=FALSE, out.width = '100%'------------------
knitr::include_graphics("bradshaw-area.png")

## ----comp-hist, eval=FALSE-----------------------------------------------
#  
#  bradshaw_reviews$byline <- "Peter Bradshaw"
#  
#  logan_reviews$byline <- "Brian Logan"
#  
#  comp_df <- bind_rows(logan_reviews, bradshaw_reviews) %>%
#    mutate(star_rating = as.numeric(star_rating))
#  
#  comp_df2 <- comp_df %>%
#    group_by(star_rating, byline) %>%
#    summarise(count = n()) %>% group_by(byline) %>%
#    mutate(perc = count/sum(count))
#  
#  comp_p <- ggplot(comp_df,
#                   aes(x = star_rating, y = ..density.., fill = byline)) +
#    geom_histogram(position="dodge", bins = 5, alpha = 0.5) +
#    scale_y_continuous(labels = scales::percent) +
#    scale_fill_viridis_d(end = 0.9, option = "inferno") +
#    labs(x = "Star Rating", y = "", fill = "") +
#    theme(legend.position = "bottom") +
#    geom_line(aes(x = star_rating, y = perc,
#                  colour = byline, group = byline), data = comp_df2,
#              size = 1) +
#    scale_colour_viridis_d(end = 0.9, option = "inferno")  +
#    guides(colour = FALSE)
#  
#  comp_p

## ----bradshaw-logan-comp, echo=FALSE, out.width = '100%'-----------------
knitr::include_graphics("logan-bradshaw-comp.png")

## ----relationships-demo, eval=FALSE--------------------------------------
#  relations <- gu_content(query = "relationships", from_date = "2018-11-30",
#                          to_date = "2018-12-30")
#  
#  tibble::glimpse(relations)

## ----relations-read, echo=FALSE, message=TRUE, warning=TRUE--------------
relations <- readr::read_rds("relations.rds")

relations

## ----relations-sex-demo, eval=FALSE--------------------------------------
#  relations_sex <- gu_content(query = "relationships", from_date = "2018-11-30",
#                              to_date = "2018-12-30", tag = "lifeandstyle/sex")
#  
#  relations_sex

## ----relations-sex-read, echo=FALSE, message=TRUE, warning=TRUE----------
relations_sex <- readr::read_rds("relations_sex.rds")

tibble::glimpse(relations_sex)

Try the guardianapi package in your browser

Any scripts or data that you put into this service are public.

guardianapi documentation built on June 24, 2019, 1:02 a.m.