guidedPLS-package: Supervised Dimensional Reduction by Guided Partial Least...

guidedPLS-packageR Documentation

Supervised Dimensional Reduction by Guided Partial Least Squares

Description

Guided partial least squares (guided-PLS) is the combination of partial least squares by singular value decomposition (PLS-SVD) and guided principal component analysis (guided-PCA). This package provides implementations of PLS-SVD, guided-PLS, and guided-PCA for supervised dimensionality reduction. The guided-PCA function (new in v1.1.0) automatically handles mixed data types (continuous and categorical) in the supervision matrix and provides detailed contribution analysis for interpretability. For the details of the methods, see the reference section of GitHub README.md <https://github.com/rikenbit/guidedPLS>.

Details

The DESCRIPTION file: This package was not yet installed at build time.
Index: This package was not yet installed at build time.

Author(s)

Koki Tsuyuzaki [aut, cre]

Maintainer: Koki Tsuyuzaki <k.t.the-answer@hotmail.co.jp>

References

Le Cao, et al. (2008). A Sparse PLS for Variable Selection when Integrating Omics Data. Statistical Applications in Genetics and Molecular Biology, 7(1)

Reese S E, et al. (2013). A new statistic for identifying batch effects in high-throughput genomic data that uses guided principal component analysis. Bioinformatics, 29(22), 2877-2883

See Also

toyModel,PLSSVD,sPLSDA,guidedPLS

Examples

ls("package:guidedPLS")

guidedPLS documentation built on Aug. 25, 2025, 5:10 p.m.