Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
eval = FALSE
)
## -----------------------------------------------------------------------------
# library(hbsaems)
# data("data_betalogitnorm")
# data <- data_betalogitnorm
#
# data("adjacency_matrix_car")
# M <- adjacency_matrix_car
## -----------------------------------------------------------------------------
# model_prior_pred <- hbm_betalogitnorm(
# response = "y",
# predictors = c("x1", "x2", "x3"),
# data = data,
# sample_prior = "only",
# prior = c(
# set_prior("normal(-1, 0.7)", class = "Intercept"),
# set_prior("normal(0, 0.5)", class = "b"),
# set_prior("gamma(2, 0.1)", class = "phi")
# )
# )
## -----------------------------------------------------------------------------
# summary(model_prior_pred)
## -----------------------------------------------------------------------------
# model_prior_pred_phi <- hbm_betalogitnorm(
# response = "y",
# predictors = c("x1", "x2", "x3"),
# n = "n",
# deff = "deff",
# data = data,
# sample_prior = "only",
# prior = c(
# set_prior("normal(-1, 0.7)", class = "Intercept"),
# set_prior("normal(0, 0.5)", class = "b")
# )
# )
## -----------------------------------------------------------------------------
# summary(model_prior_pred_phi)
## -----------------------------------------------------------------------------
# result_hbpc <- hbpc(model_prior_pred, response_var="y")
# summary(result_hbpc)
## -----------------------------------------------------------------------------
# result_hbpc$prior_predictive_plot
## -----------------------------------------------------------------------------
# model <- hbm_betalogitnorm(
# response = "y",
# predictors = c("x1", "x2", "x3"),
# n = "n",
# deff = "deff",
# data = data,
# sample_prior = "no",
# prior = c(
# set_prior("normal(-1, 0.7)", class = "Intercept"),
# set_prior("normal(0, 0.5)", class = "b")
# )
# )
## -----------------------------------------------------------------------------
# summary(model)
## -----------------------------------------------------------------------------
# model_with_defined_re <- hbm_betalogitnorm(
# response = "y",
# predictors = c("x1", "x2", "x3"),
# n = "n",
# deff = "deff",
# group = "group",
# data = data,
# sample_prior = "no",
# prior = c(
# set_prior("normal(-1, 0.7)", class = "Intercept"),
# set_prior("normal(0, 0.5)", class = "b")
# )
# )
## -----------------------------------------------------------------------------
# summary(model_with_defined_re)
## -----------------------------------------------------------------------------
# # Prepare Missing Data
# data_missing <- data
# data_missing$y[sample(1:30, 3)] <- NA # 3 missing values in response
## -----------------------------------------------------------------------------
# model_deleted <- hbm_betalogitnorm(
# response = "y",
# predictors = c("x1", "x2", "x3"),
# n = "n",
# deff = "deff",
# group = "group",
# data = data_missing,
# handle_missing = "deleted",
# sample_prior = "no",
# prior = c(
# set_prior("normal(-1, 0.7)", class = "Intercept"),
# set_prior("normal(0, 0.5)", class = "b")
# )
# )
## -----------------------------------------------------------------------------
# summary(model_deleted)
## -----------------------------------------------------------------------------
# # Prepare missing data
# data_missing <- data
# data_missing$y[3:5] <- NA
# data_missing$x1[6:7] <- NA
## -----------------------------------------------------------------------------
# model_multiple <- hbm_betalogitnorm(
# response = "y",
# predictors = c("x1", "x2", "x3"),
# n = "n",
# deff = "deff",
# group = "group",
# data = data_missing,
# handle_missing = "multiple",
# sample_prior = "no",
# prior = c(
# set_prior("normal(-1, 0.7)", class = "Intercept"),
# set_prior("normal(0, 0.5)", class = "b")
# )
# )
## -----------------------------------------------------------------------------
# summary(model_multiple)
## -----------------------------------------------------------------------------
# data_missing <- data
# data_missing$x1[3:5] <- NA
# data_missing$x2[14:17] <- NA
## -----------------------------------------------------------------------------
# model_during_model <- hbm_betalogitnorm(
# response = "y",
# predictors = c("x1", "x2", "x3"),
# n = "n",
# deff = "deff",
# group = "group",
# data = data_missing,
# handle_missing = "model",
# sample_prior = "no",
# prior = c(
# set_prior("normal(-1, 0.7)", class = "Intercept"),
# set_prior("normal(0, 0.5)", class = "b")
# )
# )
## -----------------------------------------------------------------------------
# summary(model_during_model)
## -----------------------------------------------------------------------------
# model_spatial <- hbm_betalogitnorm(
# response = "y",
# predictors = c("x1", "x2", "x3"),
# n = "n",
# deff = "deff",
# group = "group",
# sre = "sre",
# sre_type = "car",
# car_type = "icar",
# M = M,
# data = data,
# sample_prior = "no",
# prior = c(
# set_prior("normal(-1, 0.7)", class = "Intercept"),
# set_prior("normal(0, 0.5)", class = "b")
# )
# )
## -----------------------------------------------------------------------------
# summary(model_spatial)
## -----------------------------------------------------------------------------
# result_hbcc <- hbcc(model)
# summary(result_hbcc)
## -----------------------------------------------------------------------------
# model <- update_hbm(model, iter = 8000)
## -----------------------------------------------------------------------------
# summary(model)
## -----------------------------------------------------------------------------
# result_hbcc <- hbcc(model)
# summary(result_hbcc)
## -----------------------------------------------------------------------------
# result_hbcc$plots$trace
## -----------------------------------------------------------------------------
# result_hbcc$plots$dens
## -----------------------------------------------------------------------------
# result_hbcc$plots$acf
## -----------------------------------------------------------------------------
# result_hbcc$plots$nuts_energy
## -----------------------------------------------------------------------------
# result_hbcc$plots$rhat
## -----------------------------------------------------------------------------
# result_hbcc$plots$neff
## -----------------------------------------------------------------------------
# result_hbmc <- hbmc(
# model = list(model, model_spatial),
# comparison_metrics = c("loo", "waic", "bf"),
# run_prior_sensitivity= TRUE,
# sensitivity_vars = c ("b_x1")
# )
#
# summary(result_hbmc)
## -----------------------------------------------------------------------------
# result_hbmc$primary_model_diagnostics$pp_check_plot
## -----------------------------------------------------------------------------
# result_hbmc$primary_model_diagnostics$params_plot
## -----------------------------------------------------------------------------
# result_hbsae <- hbsae(model)
# summary(result_hbsae)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.