Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
eval = FALSE
)
## -----------------------------------------------------------------------------
# library(hbsaems)
# data("data_fhnorm")
# data <- data_fhnorm
# head(data)
## -----------------------------------------------------------------------------
# data_missing <- data
# data_missing$y[3:5] <- NA
## -----------------------------------------------------------------------------
# model_deleted <- hbm(
# formula = bf(y ~ x1 + x2 + x3),
# hb_sampling = "gaussian",
# hb_link = "log",
# re = ~(1|group),
# data = data_missing,
# handle_missing = "deleted",
# )
## -----------------------------------------------------------------------------
# summary(model_deleted)
## -----------------------------------------------------------------------------
# data_missing <- data
# data_missing$y[3:5] <- NA
# data_missing$x1[6:7] <- NA
## -----------------------------------------------------------------------------
# model_during_model <- hbm(
# formula = bf(y | mi() ~ mi(x1) + x2 + x3) + bf(x1 | mi() ~ x2 + x3),
# hb_sampling = "gaussian",
# hb_link = "log",
# re = ~(1|group),
# data = data_missing,
# handle_missing = "model",
# prior = c(
# prior("normal(1, 0.2)", class = "Intercept", resp = "y"),
# prior("normal(0, 0.1)", class = "b", resp = "y"),
# prior("exponential(5)", class = "sd", resp = "y"),
#
# prior("normal(1, 0.2)", class = "Intercept", resp = "x1"),
# prior("normal(0, 0.1)", class = "b", resp = "x1"),
# prior("exponential(5)", class = "sd", resp = "x1")
# )
# )
## -----------------------------------------------------------------------------
# summary(model_during_model)
## -----------------------------------------------------------------------------
# model_during_model <- hbm_lnln(
# response = "y",
# predictors = c("x1", "x2", "x3"),
# data = data_missing,
# handle_missing = "model"
# )
## -----------------------------------------------------------------------------
# summary(model_during_model)
## -----------------------------------------------------------------------------
# model_multiple <- hbm(
# formula = bf(y ~ x1 + x2 + x3),
# hb_sampling = "gaussian",
# hb_link = "log",
# re = ~(1|group),
# data = data_missing,
# handle_missing = "multiple"
# )
## -----------------------------------------------------------------------------
# summary(model_multiple)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.