Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
eval = FALSE
)
## -----------------------------------------------------------------------------
# library(hbsaems)
## -----------------------------------------------------------------------------
# data <- data_lnln
# head(data)
## -----------------------------------------------------------------------------
# summary(data)
## -----------------------------------------------------------------------------
# model.check_prior <- hbm_lnln(
# response = "y_obs",
# predictors = c( "x1", "x2", "x3"),
# group = "group",
# data = data,
# prior = c(
# prior("normal(0.1,0.1)", class = "b"),
# prior("normal(1,1)", class = "Intercept")
# ),
# sample_prior = "only",
# iter = 4000,
# warmup = 2000,
# chains = 2,
# seed = 123
# )
## -----------------------------------------------------------------------------
# summary(model.check_prior)
## -----------------------------------------------------------------------------
# result.hbpc <- hbpc(model.check_prior, response_var="y_obs")
# summary(result.hbpc)
## -----------------------------------------------------------------------------
# result.hbpc$prior_predictive_plot
## -----------------------------------------------------------------------------
# model <- hbm_lnln(
# response = "y_obs",
# predictors = c( "x1", "x2", "x3"),
# data = data,
# prior = c(
# prior("normal(0.1,0.1)", class = "b"),
# prior("normal(1,1)", class = "Intercept")
# ),
# sample_prior = "no", # the default is "no", you can skip it
# iter = 4000,
# warmup = 2000,
# chains = 2,
# seed = 123
# )
## -----------------------------------------------------------------------------
# summary(model)
## -----------------------------------------------------------------------------
# model.re <- hbm_lnln(
# response = "y_obs",
# predictors = c( "x1", "x2", "x3"),
# group = "group",
# data = data,
# prior = c(
# prior("normal(0.1,0.1)", class = "b"),
# prior("normal(1,1)", class = "Intercept")
# ),
# sample_prior = "no", # the default is "no", you can skip it
# iter = 4000,
# warmup = 2000,
# chains = 2,
# seed = 123
# )
## -----------------------------------------------------------------------------
# summary(model.re)
## -----------------------------------------------------------------------------
# # Prepare Missing Data
# data.missing1 <- data
# data.missing1$y_obs[sample(1:30, 3)] <- NA # 3 missing values in response
## -----------------------------------------------------------------------------
# model.deleted <- hbm_lnln(
# response = "y_obs",
# predictors = c( "x1", "x2", "x3"),
# group = "group",
# data = data.missing1,
# handle_missing = "deleted",
# prior = c(
# prior("normal(0.1,0.1)", class = "b"),
# prior("normal(1,1)", class = "Intercept")
# ),
# sample_prior = "no", # the default is "no", you can skip it
# iter = 4000,
# warmup = 2000,
# chains = 2,
# seed = 123
# )
## -----------------------------------------------------------------------------
# summary(model.deleted)
## -----------------------------------------------------------------------------
# model.multiple <- hbm_lnln(
# response = "y_obs",
# predictors = c( "x1", "x2", "x3"),
# group = "group",
# data = data.missing1,
# handle_missing = "multiple",
# m = 5,
# prior = c(
# prior("normal(0.1,0.1)", class = "b"),
# prior("normal(1,1)", class = "Intercept")
# ),
# sample_prior = "no", # the default is "no", you can skip it
# iter = 4000,
# warmup = 2000,
# chains = 2,
# seed = 123
# )
## -----------------------------------------------------------------------------
# summary(model.multiple)
## -----------------------------------------------------------------------------
# data.missing2 <- data
# data.missing1$y_obs[sample(1:30, 3)] <- NA # 3 missing values in response
# data.missing2$x1[3:5] <- NA # missing values in predictor
# data.missing2$x2[14:17] <- NA
## -----------------------------------------------------------------------------
# model.during_model <- hbm_lnln(
# response = "y_obs",
# predictors = c( "x1", "x2", "x3"),
# group = "group",
# data = data.missing2,
# handle_missing = "model",
# prior = c(
# prior("normal(0.1,0.1)", class = "b"),
# prior("normal(1,1)", class = "Intercept")
# ),
# sample_prior = "no", # the default is "no", you can skip it
# iter = 4000,
# warmup = 2000,
# chains = 2,
# seed = 123
# )
## -----------------------------------------------------------------------------
# summary(model.during_model)
## -----------------------------------------------------------------------------
# M <- adjacency_matrix_car
# M
## -----------------------------------------------------------------------------
# model.spatial <- hbm_lnln(
# response = "y_obs",
# predictors = c( "x1", "x2", "x3"),
# group = "group",
# data = data,
# sre = "sre", # Spatial random effect variable
# sre_type = "car",
# car_type = "icar",
# M = M,
# prior = c(
# prior("normal(0.1,0.1)", class = "b"),
# prior("normal(1,1)", class = "Intercept")
# ),
# sample_prior = "no", # the default is "no", you can skip it
# iter = 4000,
# warmup = 2000,
# chains = 2,
# seed = 123
# )
## -----------------------------------------------------------------------------
# summary(model.spatial)
## -----------------------------------------------------------------------------
# result.hbcc <- hbcc(model)
# summary(result.hbcc)
## -----------------------------------------------------------------------------
# result.hbcc$plots$trace
## -----------------------------------------------------------------------------
# result.hbcc$plots$dens
## -----------------------------------------------------------------------------
# result.hbcc$plots$acf
## -----------------------------------------------------------------------------
# result.hbcc$plots$nuts_energy
## -----------------------------------------------------------------------------
# result.hbcc$plots$rhat
## -----------------------------------------------------------------------------
# result.hbcc$plots$neff
## -----------------------------------------------------------------------------
# model.update <- update_hbm(
# model = model,
# iter = 12000,
# warmup = 6000,
# chains = 2,
# control = list(adapt_delta = 0.95)
# )
## -----------------------------------------------------------------------------
# summary(model.update)
## -----------------------------------------------------------------------------
# result.hbmc <- hbmc(
# model = list(model, model.spatial),
# comparison_metrics = c("loo", "waic", "bf"),
# run_prior_sensitivity= TRUE,
# sensitivity_vars = c("b_Intercept", "b_x")
# )
#
# summary(result.hbmc)
## -----------------------------------------------------------------------------
# result.hbmc$primary_model_diagnostics$pp_check_plot
## -----------------------------------------------------------------------------
# result.hbmc$primary_model_diagnostics$params_plot
## -----------------------------------------------------------------------------
# result.hbsae <- hbsae(model)
# summary(result.hbsae)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.